

ARi Industries Inc.

<u>Visit our web site:</u> http://www.ariindustries.com E-Mail: sales@ariindustries.com

The second

381 ARi Court Addison, IL 60101 800-237-6725 Phone 630-953-9100 Phone 630-953-0590 Fax

24		BULLETIN
	ARi Corporate Information • COMPANY PROFILE • REPRESENTATIVES	
	STANDARD THERMOCOUPLES • AEROPAK THERMOCOUPLES (UP TO 2200°F) • PERMA MELT THERMOCOUPLES (FOR MOLTEN ALUMINUM)	1.0 1.5
	HIGH TEMP THERMOCOUPLES • HIGH TEMPERATURE THERMOCOUPLES (UP TO 4200°F) • 1600°C INDUSTRIAL GRADE THERMOCOUPLES	2.0 2.2 & 2.3
	PAD STYLE THERMOCOUPLES • AEROPAD THERMOCOUPLES (FOR TUBE MEASUREMENTS)	3.0
	AEROPAK M.I. CABLE • AEROPAK THERMOCOUPLE and CONDUCTOR CABLE • HIGH TEMPERATURE AEROPAK THERMOCOUPLE CABLE • HELPFUL HINTS TO USE AEROPAK • CONDUCTOR CABLE ASSEMBLIES	4.0 4.1 EDF-4 4.4
- 10° O	HEATER ASSEMBLIES & HEATER CABLE • ELECTRIC HEATING CABLE • FLEXIBLE HIGH WATT DENSITY ELECTRIC HEATER ASSY'S • HEATER APPLICATION GUIDE • THIN FILM DEPOSITION RESEARCH APPLICATION SHEET	5.1 5.2 EDF-3 H-90-1
	HARDWARE/ACCESSORIES • HARDWARE / THERMOCOUPLE & RTD ACCESSORIES • AEROGARD THERMOWELLS • TEMPERATURE TRANSMITTER SYSTEMS	6.0 6.1 6.3
	MULTILEVEL THERMOCOUPLES • MULTILEVEL TEMPERATURE PROFILING ASSEMBLY	7.3
	RTD ASSEMBLIES • ARIDET RESISTANCE TEMPERATURE DETECTORS	8.0

http://www.ariindustries.com sales@ariindustries.com

Company Profile

- Established in 1952 as Aero Research Instruments in Chicago, Illinois, ARi was one of the first companies to use mineral insulated cable technology to improve product performance and reliability. That same technology has been improved and refined over the years and is the heart of a wide variety of products that ARi manufactures today.
- ARi is recognized as an industry leader and quality supplier of metal-sheathed mineral insulated cable. All standard AerOpak_® cable is supplied with high purity MgO insulation and accuracy per ASTM-E230 special limits of error. As well as maintaining a large inventory of finished cable, ARi also specializes in custom thermocouple, conductor, and heater cables to meet specific application requirements.
- □ ARi uses the same precision cable to manufacture a large selection of thermocouples, heaters, and RTD's. AerOpad_® and Fan Type weld pad thermocouples are used in power plants and refineries throughout the world for accurate measurement of furnace heater tubes. Multipoint thermocouples and RTD's are used in temperature profiling applications of furnaces and reactors. Our rugged thermocouples and RTD's are used in aerospace applications including brake temperature measurements of commercial and military aircraft. ARi also supplies ultra high temperature thermocouples for applications up to 4000° F. using noble and refractory materials.
- □ ARi is also a leading supplier of mineral insulated heater assemblies and cable. AerOrod_® high watt density heaters can supply up to 150 watts per square inch yielding quick response and long heater life in even the toughest applications. By using internally welded transitions between the hot and cold sections, possible cold end failures are greatly reduced. ARi heaters are used in semiconductor processing, furnace element manufacturing, aerospace and heat tracing applications.
- ARi can supply complete non-destructive testing and certification for all cable and finished assemblies. Calibration standards are traceable to the National Institute of Standards and Technology. ARi's quality management system meets the requirements of ISO9002 as certified by Lloyds Register Quality Assurance.
- ARi is a member of the Okazaki group of companies since 1980. Manufacturing facility and corporate offices are located in Addison, Illinois.

REPRESENTATIVE LIST JUNE 2004

ALABAMA (Northern) Pro Therm Industries P.O. Box 8446 Hermitage, TN 37076 Ph: 800-811-3798 Fax: 615-834-5834

ALABAMA (Southern) ARi Industries, Inc. 381 ARi Court Addison, IL 60101 Ph: 800-237-6725 Fax:630-953-0590

ARIZONA ARi Industries, Inc. 381 ARi Court Addison, IL 60101 Ph:800-237-6725

Ph:800-237-6725 Fax:630-953-0590

ARKANSAS Brice Company 4301 Greenbriar Dr. Stafford, TX 77477 Ph:281-240-1788 Fax:281-240-0656

CALIFORNIA ARi Industries, Inc.

381 ARi Court Addison, IL 60101 Ph:800-237-6725 Fax:630-953-0590

COLORADO

ARi Industries, Inc. 381 ARi Court Addison, IL 60101 Ph:800-237-6725 Fax::630-953-0590

CONNECTICUT

ARi Industries, Inc. 381 ARi Court Addison, IL 60101 Ph:800-237-6725 Fax:630-953-0590

DELAWARE

ARi Industries, Inc. 381 ARi Court Addison, IL 60101 Ph:800-237-6725 Fax:630-953-0590

FLORIDA

W.P. Brett Associates, LLC 3110 Bulkley Pl. Eustis, FL 32726 Ph:352-406-3050 Fax:352-589-6962 E-Mail: wpbrett@aol.com

GEORGIA

ARi Industries, Inc. 381 ARi Court Addison, IL 60101 Ph:800-237-6725 Fax:630-953-0590

IDAHO

ARi Industries, Inc. 381 ARi Court Addison, IL 60101 Ph:800-237-6725 Fax:630-953-0590

ILLINOIS

Precision Measurement Products Inc. 510 Market Loop, Suite 202 West Dundee, IL 60118 Ph: 847-426-4446 Fax: 847-426-4489

INDIANA

ARi Industries, Inc. 381 ARi Court Addison, IL 60101 Ph:800-237-6725 Fax:630-953-0590

IOWA

Precision Measurement Products Inc. 510 Market Loop, Suite 202 West Dundee, IL 60118 Ph: 847-426-4446 Fax: 847-426-4489

KANSAS

Precision Measurement Products Inc. 11648 Momarte Lane St. Louis, MO 63146 Ph: 314-997-1755 Fax: 314-997-2114

KENTUCKY

Loesch Associates 24600 Detroit Rd. Westlake, OH 44145 Ph:440-250-3400 Fax:440-250-3404

LOUISIANA

Brice Company 4301 Greenbriar Dr. Stafford, TX 77477 Ph:281-240-1788 Fax:281-240-0656

MAINE

ARi Industries, Inc. 381 ARi Court Addison, IL 60101 Ph:800-237-6725 Fax:630-953-0590

MARYLAND

ARi Industries, Inc. 381 ARi Court Addison, IL 60101 Ph:800-237-6725 Fax:630-953-0590

MASSACHUSETTS

ARi Industries, Inc. 381 ARi Court Addison, IL 60101 Ph:800-237-6725 Fax:630-953-0590

MICHIGAN

ARi Industries, Inc. 381 ARi Court Addison, IL 60101 Ph:800-237-6725 Fax:630-953-0590

MINNESOTA

Precision Measurement Products Inc. 510 Market Loop, Suite 202 West Dundee, IL 60118 Ph: 612-333-7087 Fax: 847-426-4489

MISSISSIPPI

ARi Industries, Inc. 381 ARi Court Addison, IL 60101 Ph:800-237-6725 Fax:630-953-0590

MISSOURI

Precision Measurement Products Inc. 11648 Momarte Lane St. Louis, MO 63146 Ph: 314-997-1755 Fax: 314-997-2114

MONTANA

ARi Industries, Inc. 381 ARi Court Addison, IL 60101 Ph:800-237-6725 Fax:630-953-0590

NEBRASKA

Precision Measurement Products Inc. 11648 Momarte Lane St. Louis, MO 63146 Ph: 314-997-1755 Fax: 314-997-2114

NEVADA

ARi Industries, Inc. 381 ARi Court Addison, IL 60101 Ph:800-237-6725 Fax:630-953-0590

NEW HAMPSHIRE

ARi Industries, Inc. 381 ARi Court Addison, IL 60101 Ph:800-237-6725 Fax:630-953-0590

NEW JERSEY (Northern)

Applied Process Instruments P.O. Box 68 Livingston, NJ 07039 Ph: 973-740-8641 Fax: 973-994-0277

NEW JERSEY (Southern)

ARi Industries, Inc. 381 ARi Court Addison, IL 60101 Ph:800-237-6725 Fax:630-953-0590

NEW MEXICO

ARi Industries, Inc. 381 ARi Court Addison, IL 60101 Ph:800-237-6725 Fax:630-953-0590

NEW YORK

Applied Process Instruments P.O. Box 68 Livingston, NJ 07039 Ph: 973-740-8641 Fax:973-994-0277

630-953-0590 Fax

REPRESENTATIVE LIST JUNE 2004

NORTH CAROLINA

ARi Industries, Inc. 381 ARi Court Addison, IL 60101 Ph:800-237-6725 Fax:630-953-0590

NORTH DAKOTA

Precision Measurement Products Inc. 510 Market Loop, Suite 202 West Dundee, IL 60118 Ph: 847-426-4446 Fax: 847-426-4489

OHIO (Northern)

Loesch Associates Inc. 24600 Detroit Rd., Suite 265 Westlake, OH 44145 Ph:440-250-3400 Fax:440-250-3404

OHIO (Southern) Loesch Associates Inc PO Box 54781 Cincinnati, OH 45254-0781 Ph:513-233-9977 Fax:513-588-6337

OKLAHOMA

ARi Industries, Inc. 381 ARi Court Addison, IL 60101 Ph:800-237-6725 Fax:630-953-0590

OREGON

ARi Industries, Inc. 381 ARi Court Addison, IL 60101 Ph:800-237-6725 Fax:630-953-0590

PENNSYLVANIA (Eastern)

ARi Industries, Inc. 381 ARi Court Addison, IL 60101 Ph:800-237-6725 Fax:630-953-0590

PENNSYLVANIA (Western) Measurement Instruments

P.O. Box 163 Blairsville, PA 15717 Ph:724-459-8090 Fax:724-459-9070

RHODE ISLAND

ARi Industries, Inc. 381 ARi Court Addison, IL 60101 Ph:800-237-6725 Fax:630-953-0590

SOUTH CAROLINA

ARi Industries, Inc. 381 ARi Court Addison, IL 60101 Ph:800-237-6725 Fax:630-953-0590

SOUTH DAKOTA

Precision Measurement Products Inc. 510 Market Loop, Suite 202 West Dundee, IL 60118 Ph: 847-426-4446 Fax: 847-426-4489

TENNESSEE Pro Therm Industries

Pro Therm Industries P.O. Box 8446 Hermitage, TN 37076 Ph:800-811-3798 Fax:615-834-5834

TEXAS

Brice Company 4301 Greenbriar Dr. Stafford, TX 77477 Ph:281-240-1788 Fax:281-240-0656

UTAH

ARi Industries, Inc. 381 ARi Court Addison, IL 60101 Ph:800-237-6725 Fax:630-953-0590

VERMONT

ARi Industries, Inc. 381 ARi Court Addison, IL 60101 Ph:800-237-6725 Fax:630-953-0590

VIRGINIA

ARi Industries, Inc. 381 ARi Court Addison, IL 60101 Ph:800-237-6725 Fax:630-953-0590

WASHINGTON ARi Industries, Inc. 381 ARi Court Addison, IL 60101 Ph:800-237-6725 Fax:630-953-0590

WEST VIRGINIA

Measurement Instruments P.O. Box 163 Blairsville, PA 15717 Ph:724-459-8090 Fax:724-459-9070

WISCONSIN

Precision Measurement Products Inc. 1311 Pleasant St. Lake Geneva, WI 53147 Ph: 262-249-7804 Fax: 262-249-7805

WYOMING

ARi Industries, Inc. 381 ARi Court Addison, IL 60101 Ph:800-237-6725 Fax:630-953-0590

CANADA ARi Industries, Inc. 381 ARi Court Addison, IL 60101 Ph:800-237-6725 Fax:630-953-0590

ISRAEL

Thermocon Control Instruments Ltd. P.O. Box 1166 Ramat Gan 52111, Israel Ph: 011-972-3-5790122 Fax: 011-972-3-5798014

JAPAN

Okazaki Mfg. Co. 1-3 Gokodori 3-Chome Chuo-Ku Kobe 651 Japan Ph:011-81-78-2518200 Fax:011-81-78-2518210

MEXICO

Electronica Industrial Monclova Padre Larios Y Bravo Sur 622 Apartado Postal 93 Monclova, Coahuila, Mexico 25700 Ph:011-52-866-631-13-44 Fax:011-52-866-636-05-52

EUROPE

Kamet Trading Neuweg 211B 1214 GR Hilversum, Netherlands Ph:011-31-35-628-2910 Fax:011-31-35-628-2912

NORWAY

Teck Instruments AS Postboks 115 N-3421 Lierskogen, Norway Ph:011-47-32851950 Fax:011-47-32852977

PUERTO RICO

Bill Parker Sales & Eng. P.O. Box 9066 Santurce, Puerto Rico 00908-9066 Ph:787-722-3061 Fax:787-724-2960

UNITED KINGDOM

ARi Industries (UK) Ltd Unit 2F Albany Park Frimley Road Camberley, Surrey GU16 7PE England Ph:011-441-276692500 Fax:011-441-276692110

Quality Means High Reliability

AerOpak THERMOCOUPLES

For

High reliability applications

Special calibration limits for type K, J, E , T per ASTM E-230

High purity MgO insulation Metallic Sheath

Highest purity MgO insulation to yield maximum EMF stability and minimum drift problems caused by insulation impurities

Will manufacture specials to meet your requirements

ARi Industries Inc

BULLETIN 1.0

WIRE

Termination Thermocouples STANDARD DESIGNS

DESIGN NO. T-14 Lead wire termination with 1 inch bared wire.

DESIGN NO. T-22 Potting adaptor with an extension of solid 20 ga. thermocouple lead wire, fiberglass over each and fiberglass over all, silicone varnish impregnated. The transition of AerOpak[®] to lead wire is capable of operation to 175°C.

DESIGN NO. T-31 Potting adaptor with flex spring an extension of solid 20 ga. thermocouple lead wire, fiberglass over each and fiberglass over all, silicone varnish impregnated. The transition of AerOpak[®] lead wire is capable of operation to 175°C.

DESIGN NO. T-26 Potting adaptor with extension of solid 20 ga. thermocouple lead wire, fiberglass over each and fiberglass over all, silicone varnish impregnated. Stainless steel flexible tube placed over the lead wire to limit flexure and abrasion, transition of AerOpak to lead wire is capable of operation to 175°C.

DESIGN NO. T-99 Potting adaptor with an extension of solid 20 ga. thermocouple lead wire, fiberglass over each and fiberglass over all, silicone varnish impregnated. Stainless steel braid over the lead wire to limit flexure and abrasion. Transition of AerOpak® to lead wire is capable of operation to 175°C.

Note: Lead wire terminations are approx. 16" (40.6cm) long, unless specified otherwise.

T-14

PLUG

Termination Thermocouples STANDARD DESIGNS

DESIGN NO. T-91 Standard size male plug attached directly to the sheathed thermocouple.

DESIGN NO. T-92 Ceramic connector terminal block attached directly to sheathed thermocouple.

DESIGN NO. T-77 Potting adaptor with extension of solid 20 ga. thermocouple lead wire, fiberglass over each and fiberglass over all, silicone varnish impregnated. A standard size male plug attached to lead wire, transition of AerOpak® to lead wire is capable of operation to 175°C.

DESIGN NO. T-37 Potting adaptor with flex spring extension of solid 20 ga. thermocouple lead wire, fiberglass over each and fiberglass over all, silicone varnish impregnated. A standard size male plug attached to lead wire, transition of AerOpak® to lead wire is capable of operation to 175°C with standard size male plug attached.

DESIGN NO. T-82 Potting adaptor with an extension of solid 20 ga. thermocouple lead wire, fiberglass over each and fiberglass over all, silicone varnish impregnated. Stainless steel flexible tube placed over lead wire, transition of AerOpak® to lead wire is capable of operation to 175°C.

DESIGN NO. T-103 Potting adaptor with an extension of solid 20 ga. thermocouple lead wire, fiberglass over each and fiberglass over all, silicone varnish impregnated. Stainless steel braid placed over the lead wire, with standard size male plug attached. Transition of AerOpak[®] to lead wire is capable of operation to 175°C.

HOW TO ORDER . . . see page 8

3

CONNECTION HEAD

Termination Thermocouples STANDARD DESIGNS

DESIGN NO. T-96 (CA) Connection head mounted directly on thermocouple.

DESIGN NO. T-496 (CI) Connection head mounted directly on thermocouple.

DESIGN NO. T-596 (CE) Connection head mounted directly on thermocouple.

DESIGN NO. T-57 (CA) Connection head mounted directly on the thermocouple with 1/2" NPT Hex nipple mounting fitting.

DESIGN NO. T-457 (CI) Connection head mounted directly on the thermocouple with 1/2" NPT nipple, mounting fitting.

DESIGN NO. T-557 (CE) Connection head mounted directly on the thermocouple with 1/2" NPT Hex nipple mounting fitting.

DESIGN NO. T-50824 Connection head asssembly mounted directly on thermocouple with spring loaded 1/2" NPT Hex nipple mounting fitting.

DESIGN NO. T-50829 Connection head with spring loaded terminal block mounted directly on thermocouple and 1/2" NPT nipple, union, nipple mounting hardware.

DESIGN NO. T-50867 Connection head with spring loaded terminal block mounted directly on thermocouple with 1/2" NPT nipple for the mounting hardware.

*DESIGN NO. T-50271 Connection head with fixed terminal block and sanitary cap welded to the thermocouple.

*Certified to the 3-A Sanitary Standards Symbol Council for Dairy Equipment.

DESIGN NO. T-114 Lead wire termination with 1/2" bared wire.

DESIGN NO. T-196 Miniature style connection head with fixed terminal block mounted directly to the thermocouple ¹/₄" exit threads.

DESIGN NO. T-122 Potting adaptor with extension of solid 24 ga. thermocouple lead wire with fiberglass over each and fiberglass over all, silicone varnish impregnated. The transition of AerOpak® to lead wire is capable of operation to 175°C.

DESIGN NO. T-131 Potting adaptor with flex spring an extension of solid 24 ga. thermocouple lead wire with fiberglass over each and fiberglass over all, silicone varnish impregnated. The transition of AerOpak® to lead wire is capable of operation to 175°C.

DESIGN NO. T-177 Potting adaptor with an extension of solid 24 ga. thermocouple lead wire with fiberglass over each and fiberglass over all, silicone varnish impregnated. With miniature size male plug attached to lead wire. Transition of AerOpak[®] to lead wire is capable of operation to 175°C.

DESIGN NO. T-137 Potting adaptor with flex spring and extension of solid 24 ga. thermocouple lead wire with fiberglass over each and fiberglass over all, silicone varnish impregnated. Miniature size male plug attached to lead wire. Transition of AerOpak® to lead wire is capable of operation to 175°C.

DESIGN NO. T-191 Miniature plug connector attached to thermocouple.

Note: HOW TO ORDER SEE PAGE 8.

THERMOCOUPLE DESIGNS

T-114	
T-122	
T-131	
 T-177	
T-137	
T-191	

SPECIFICATIONS

TABLE 1 SHEATH & WIRE DIAMETER

ARI SYMBO)L	L	Α	В	D	E	F	G	I	к	Р	R
SHEATH	inch	.020	.040	.062	.125	.188	.250	.313	.375	.500	.625	.750
DIAMETER	mm.	.50	1.00	1.67	3.17	4.75	6.35	8.00	9.52	12.7	15.9	19.1
WIRE	inch	.004	.006	.010	.020	.032	.040	.051	.064	.091	.114	.120
DIAMETER	mm.	.10	.15	.25	.50	.85	1.00	1.45	1.63	2.31	2.90	3.05
MAX.	feet	30	200	290	290	135	81	45	30	30	20	13
LENGTH	meters	9	61	88	88	41	25	14	9	9.1	6.1	4.0

TABLE 2 WIRE CALIBRATION SPECIAL LIMITS OF ERROR

CALIBRATION	ARi SYMBOL	ASTM E-230 SYMBOL	APPROXIMATE SIMULAR CALIBRATIONS
*Chromel P-Alumel (1)	KS	К	BS 1827, DIN 43710, NFE 18-001, JIS-C1602
*Iron-Constantan	JS	J	BS 1829, NFE 18-001
*Chromel P-Constantan (1)	ES	E	
*Copper Constantan	TS	Т	BS 1828, DIN 43710, NFE 18-001, JIS-C1602

*Calibrations are to special limits of error

(1) Registered T.M. of Hoskins Mfg. Co.

TABLE 3 HOT JUNCTION SYMBOLS

TABLE 4 SHEATH MATERIAL

SHEATH	ARi SYMBOL	MELTING POINT		USEABLE TEMP. IN AIR		EQUIVALENT ANALYSIS	
		°F	°C	°F	°C		
AISI 347 ST/ST	F	2550	1400	1650	900	BS 3605 832Nb; DIN 4550; UNS S34700	
Inconel 600 (3)	В	2570	1410	2100 (1)	1150	BS 3074-NA14; DIN 4816; UNS NO6600	
AISI 304 ST/ST	A	2550	1400	1650 (2)	900	BS 3605-801; DIN 4301; UNS S30400	
AISI 310 ST/ST	D	2570	1410	2100	1150	BS 3605-805; DIN 4878; UNS S31000	
AISI 316 ST/ST	С	2550	1400	1650	900	BS 3605-845; DIN 4401; (2-3% Mo); UNS S31600	
HASTELLOY X	V	2470	1355	2200	1222	TM CABOT CORP.	

(1) Not recommended for use in sulfur atmosphere

(2) Do not use in 800 to 1600°F temperature range due to carbon intergranular precipitation

(3) Trademark of International Nickel Corp.

TIME CONSTANTS

SHEATH DIA.	Cond. A	Cond. B	Cond. C	Cond. D
5/16	0.5*	5.5	5.0	55.0
1/4	0.3	4.0	2.5	39.0
3/16	0.2	2.5	2.0	26.0
1/8	0.1	1.5	1.0	14.0
1/16	0.05	0.5	0.5	5.0
.040	0.01	0.3	0.1	2.5

'Time in seconds

Some typical time constants (time for the thermocouple temperature to reach 63.2% of a step change in gas or liquid temperature) for various sizes are listed for different media.

Cond. A: No. 7 hot junction in water moving at a velocity (V_0) of 1.5m/sec. (5 ft/second). Cond. B: No. 8 hot junction in water moving at a

velocity (V₀) of 1.5m/sec. (5 ft/second). Cond. C: No. 7 hot junction in air moving at a mass

velocity (G_0) of 29.3 Kg/sec. m² (6 lbs/sec. ft.²) Cond. D: No. 8 hot junction in air moving at a mass velocity (G_0) of 29.3 Kg/sec. m² (6 lbs/sec. ft.²) For time constants (r) at other velocities (V) or mass velocities (G) use the equations below:

$$\tau = \tau_0 \sqrt{\frac{V_0}{V}} \text{ (for liquids)}$$

or $\tau = \tau_0 \sqrt{\frac{G_0}{G}} \text{ (for gases)}$

The results of these equations will be affected by using liquids other than water and gases other than air. However, the effect is small and can be neglected for many applications.

PermAmelt Thermocouple

FOR MOLTEN ALUMINUM TEMPERATURE MEASUREMENT

The short life of thermocouple protection tubes in molten aluminum service has always been a severe problem.

PermAmelt[®], a new approach to aluminum melt temperature sensing, has solved the problem of ceramic protection tube brittleness while retaining their heat, abrasion and corrosion resistance. Also, because of PermAmelt's[®] non-wetting and self-healing surface, these T/C's require no daily washing or coating, making them maintenance free over their entire life.

Easy to work with, PermAmelt® T/C's require no preheating due to their low thermal expansion coefficient and thermal impact resistance. Their low heat conductivity helps prevent temperature drops in the molten aluminum and contributes to energy conservation. Since the tubes are ceramic, there is no iron pickup to create inclusion in the aluminum.

ARi Industries Inc. 381 ARi Court, Addison, Illinois 60101, USA

PermAmelt[®] THERMOCOUPLE

ARi Industries Inc

381 ARi Court, Addison, Illinois 60101, USA Phone: 630-953-9100 Telefax: 630-953-0590 **TOLL FREE 1-800-237-6725** E-mail: sales@ariindustries.com Website: www.ariindustries.com

ORDERING INFORMATION:

- Select thermocouple element* (K, J, E), add its symbol after style number. Note: Other thermocouple elements and styles available on special request.
- 2) Specify lengths If L, N, and S.

Bulk Density				3.2	
Water Absorptio	n		%	0	
Vickers Hardnes	s	Load 500g	GPa	HRA 91	
		R.T	Kpsi MPa	86 590	
Flexural Strength	1	800°C	Kpsi MPa	87 600	
(4-Point Bendir	na)	1000°C	Kpsi MPa	74 510	
	3/	1200°C	Kpsi MPa	47 323	
_		1300°C	Kpsi MPa	17 117	
Fracture Toughne	ess (F	MPa/m	5.7		
Young's Modulus	Young's Modulus R.T.			43 294	
Poisson's Ratio		R.T.		0.28	
Coefficient of	40	to 400°C	10.6/00	2.6	
Expansion	40 to 800°C		x 10*%/°C	3.2	
Thormal Conduc	eis eite e	D.T	cal/ cm•sec•°C	0.05	
mermai Conduc	uvity	W/m•K	21		
Specific Heat R.T.			cal/ g₊°C	0.16	
Heat Shock Resi	stanc	°C	600		
Volume Resistivit	y	Volume Resistivity R.T.			

UNIT CONVERSION TABLES

STRESS

MPa or N/mm ²	Kgf/mm ²	Kgf/cm ²	10 ³ lb/in ² (Kpsi)
1	1.0197 x 10 ⁻¹	1.0197 x 10	0.145
9.807	1	1 x 10 ²	1.422
9.807 X 10 ⁻²	1 x 10 ⁻²	1	1.422 x 10 ⁻²
6.985	0.703	70.3	1

THERMAL CONDUCTIVITY

W/m • K	Kcal/m • h •°C	cal/cm • sec •°C
1	0.86	2.39 x 10 ⁻³
1.163	1	2.78 x 10 ⁻³
418.7	360	1

TOLL FREE 1-800-237-6725

ARi Industries, Inc. HIGH TEMPERATURE THERMOCOUPLES

For Applications Up To 2300^o C

SELECTION GUIDE BULLETIN 2.0

9/1/01

381 ARI COURT ADDISON IL 60101 USA PH: 630-953-9100 TOLL FREE: 1-800-237-6725 FAX: 630-953-0590 E-MAIL: sales@ariindustries.com WEB SITE: www.ariindustries.com

THERMOCOUPLE SELECTION

ARI HIGH TEMPERATURE THERMOCOUPLES ARE USED IN APPLICATIONS WHERE BASE METAL THERMOCOUPLES CANNOT BE USED BECAUSE OF EXCESSIVE TEMPERATURES OR SEVERE ATMOSPHERES. ARI CAN PROVIDE A WIDE VARIETY OF WIRE COMBINATIONS & SHEATH MATERIALS TO MEET THE HARSHEST DEMANDS. BY SELECTING CERTAIN MATERIALS, TEMPERATURE MEASUREMENTS UP TO 2300° C CAN BE ACHIEVED.

ARI MANUFACTURES IT'S OWN MINERAL INSULATED CABLE AND MANY OF OUR THERMOCOUPLES ARE AVAILABLE IN BENDABLE SHEATHS & LONGER LENGTHS. THIS IN-HOUSE CAPABILITY ENABLES US TO MANUFACTURE A VARIETY OF CUSTOM MATERIAL COMBINATIONS. APPLICATIONS INCLUDE PROCESS CONTROL OF VACUUM FURNACES, GAS FURNACES, HIGH TEMP OVENS AND REACTION FURNACES. PROCESSES INCLUDE SINTERING, ANNEALING AND CARBURIZING.

WHILE MANY PROCESS VARIABLES AFFECT SERVICE LIFE, THERE ARE 2 IMPORTANT CONSIDERATIONS FOR SELECTING THE PROPER THERMOCOUPLE FOR A PARTICULAR APPLICATION. 1.) WHAT IS THE *TEMPERATURE RANGE* YOU WILL NEED TO MEASURE? 2.) WHAT IS THE *ATMOSPHERE* THE THERMOCOUPLE WILL BE EXPOSED TO DURING OPERATION? WITH THIS INFORMATION, IT IS POSSIBLE TO USE THESE TABLES TO SELECT A SUITABLE WIRE, SHEATH AND INSULATION COMBINATION. THE PHYSICAL REQUIREMENTS OF THE THERMOCOUPLE (SHEATH DIAMETER, JUNCTION TYPE AND TERMINATION STYLE) CAN THEN BE SELECTED TO COMPLETE THE DESIGN. OF COURSE, YOU CAN ALWAYS CONTACT OUR ARI SALES STAFF FOR HELP IN SELECTING THE PROPER THERMOCOUPLE.

THERMOCOUPLE WIRE TYPES

THERMOCOUPLE COMBINATIONS	ARI SYMBOL	STANDARD LIMITS OF ERROR RECOM	I. TEMP. RANGE
PLATINUM 10% RHODIUM (+) VS. PLATINUM (-) TYPE S	S	± 1.5°C OR .25% PER ASTM E-230	0 - 1450°C
PLATINUM 13% RHODIUM (+) VS. PLATINUM (-) TYPE R	R	± 1.5°C OR .25% PER ASTM E-230	0 - 1450°C
PLATINUM 30% RHODIUM (+) VS. PLATINUM 6% RHODIUM (-) TYPE I	B	± .5% PER ASTM E-230	870 - 1700°C
TUNGSTEN 5% RHENIUM (+) VS. TUNGSTEN 26% RHENIUM (-) TYPE (AE	±4.4° C (0 - 426°C) ± 1% (426 TO 2315°C) PER ASTM E-988	0 - 2200°C
TUNGSTEN 3% RHENIUM (+) VS. TUNGSTEN 25% RHENIUM (-) TYPE D	AO	±4.4° C (0 - 426°C) ± 1% (426 TO 2315°C) PER ASTM E-988	0 - 2200°C

SHEATH MATERIALS TABLE 2

SHEATH TYPE	ARI SYMBOL	RECOM. Max. Temp.	MELTING TEMP	ALLOWABLE ENVIRONMENT	STD SHEATH DIAMETERS	MIN.BEND RADIUS
INCONEL 600	В	1175°C	1345°C	INERT, VACUUM, OXIDIZING	.040", .062", .125", .188", .250"	5 X DIA.
PLATINUM 10% RHODIUM	АН	1550°C	1850°C	INERT, OXIDIZING	.040", .062", .125"	5 X DIA.
TANTALUM	N	2200°C	2995°C	INERT, VACUUM	.040", .062", .125"	10 X DIA.
MOLYBDENUM	0	2000°C	2620°C	INERT, VACUUM, REDUCING	.062", .125", .188" .250"	DO NOT BEND
NIOBIUM 1% ZIRCONIUM	AV	2200°C	2495°C	INERT, VACUUM	.062", .125"	10 X DIA.
COATED MOLYBDENUM	OCR	1600°C	2000°C	INERT, OXIDIZING	.125", .250"	DO NOT BEND

INSULATION MATERIALS TABLE 3

INSULATION TYPE	ARI Symbol	RECOM.MAX. OPER. TEMP	APPROX. MELTING TEMP.	COMMENTS
MAGNESIUM OXIDE (MgO)	N	1700°C	2800°C	VERY HYGROSCOPIC AND USED MOSTLY IN COMPACTED SHEATHS
ALUMINA OXIDE (Al ₂ 0 ₃)	Α	1550°C	2040°C	EXCELLENT WITH PLATINUM ALLOYS
HAFNIUM OXIDE (Hf0 ₂₎	н	2200°C	2790°C	COMPARABLE TO BERYLLIA OXIDE AND SAFE TO HANDLE
BERYLLIUM OXIDE (BeO) *	В	2200°C	2650°C	EXCELLENT HIGH TEMP THERMAL CONDUCTIVITY AND RESISTIVITY

*BERYLLIUM IS CONSIDERED A TOXIC MATERIAL AND CAN CAUSE HEALTH PROBLEMS IF PARTICLES ARE INHALED.

SHEATH DIAMETER CODES TABLE 4

SHEATH DIAMETER / LETTER CODE . 040" / A .062" / B .125" / D .188" / E .250" / F

JUNCTION NUMBER CODES

SHEATH TYPE	WIRE TYPE LETTER CODE	JUNCTION CODE GROUNDED	JUNCTION CODE UNGROUNDED
INCONEL 600	R, S, & B	(8.1)	9
PLAT 10% RH.	R, S, & B	8	9
COATED MOLY	AE & A0	N/A	(9.3)
TANTALUM	R, S, B, AE, & AO	(8.1)	(9.5)
MOLYBDENUM	R, S, & B	N/A	(9.4)
MOLYBDENUM	AE & A0	N/A	(9.3)
NIOBIUM 1% ZIRC.	AE & A0	(8.1)	(9.5)

STANDARD TERMINATION STYLES

OPTIONS/MODIFICATIONS

HIGH TEMPERATURE TERMINATION

IN APPLICATIONS WHERE THE COLD END TERMINATION WILL SEE TEMPERATURES IN EXCESS OF 200°C, STANDARD EPOXY SEALS MAY MAY BREAKDOWN CAUSING FAILURE. IN THIS CASE, ARI CAN SUPPLY A CERAMIC CEMENT SEAL WHICH CAN WITHSTAND TEMPERATURES UP TO 450°C. TO SPECIFY THIS OPTION, ADD THE PREFIX **HI**- IN FRONT OF THE PART NUMBER SELECTED.

EXAMPLE: HI-T-107N-12DAE(9.5)N

DUPLEX ELEMENT CONSTRUCTION

MOST THERMOCOUPLE COMBINATIONS WITH AN OUTSIDE SHEATH DIAMETER OF 1/8" OR LARGER ARE AVAILABLE IN DUPLEX ELEMENT CONSTRUCTION (2 SEPARATE MEASURING CIRCUITS IN 1 SHEATH). TO SPECIFY THIS OPTION, ADD THE SUFFIX .4 AFTER THE STYLE NUMBER, **REPEAT THE JUNCTION CODE A 2ND TIME AND ADD PARENTHESES**.

EXAMPLE: T-91.4N -12FR(9.9)B OR T-91.4B-18DAE(9.3)(9.3)O

MATING JACK

IF REQUIRED WITH ANY OF OUR MALE PLUG TYPE THERMOCOUPLES (T-91, T-191, AND HI-T-91), WE CAN SUPPLY THE APPROPRIATE MATING JACK WITH THE ASSEMBLY. TO SPECIFY THIS MODIFICATION, ADD (**MOD**) AFTER THE PART NUMBER AND SPECIFY **"SUPPLIED WITH MATING JACK"**.

ARGON BACKFILL

IN ORDER TO MINIMIZE THE EFFECTS OF ANY RESIDUAL OXIDATION REMAINING INSIDE NON-COMPACTED SHEATH DESIGNS, ARI CAN EVACUATE AND BACKFILL THE SHEATH WITH INERT ARGON GAS PRIOR TO SEALING THE COLD END. TO SPECIFY THIS MODIFICATION, ADD (**MOD**) AFTER THE PART NUMBER AND SPECIFY **"WITH ARGON BACKFILL"** IN THE DESCRIPTION.

SPECIAL LIMITS OF ERROR

THERMOCOUPLES WITH R,S & B CALIBRATIONS MADE WITH MINERAL INSULATED CONSTRUCTION CAN BE SUPPLIED WITH SPECIAL LIMITS OF ERROR TOLERANCES PER ASTM E - 230 OR CLASS 1 PER IEC-584 SUBJECT TO AVAILABILITY OF MATERIAL FROM STOCK. TO SPECIFY THIS MODIFICATION, ADD (**MOD**) AFTER THE PART NUMBER AND SPECIFY "**PER SPECIAL LIMITS OF ERROR**" OR "**PER CLASS 1 TOLERANCE**" IN THE DESCRIPTION.

TEFLON INSULATED EXTENSION WIRES

FOR DESIGNS WHERE EXTENSION WIRE ATTACHMENT IS REQUIRED, ARI CAN SUPPLY MOISTURE RESISTANT TEFLON INSULATED EXTENSION WIRE IN PLACE OF OUR STANDARD FIBERGLASS. OTHER INSULATION TYPES CAN BE SUPPLIED SUBJECT TO AVAILABILITY. TO SPECIFY THIS MODIFICATION, ADD (**MOD**) AFTER THE PART NUMBER AND SPECIFY "**WITH TEFLON INSULATED LEADS**" IN THE DESCRIPTION.

METRIC SIZES

ARI MAINTAINS A WIDE VARIETY OF MINERAL INSULATED CABLE AND TUBING IN STOCK TO MANUFACTURE THERMOCOUPLES WITH METRIC SHEATH DIAMETER REQUIREMENTS. METRIC SIZES ARE SUBJECT TO AVAILABILITY. TO SPECIFY THIS OPTION, INSERT DECIMAL EQUIVALENT IN PLACE OF THE SHEATH DIAMETER LETTER CODE OF THE PART NUMBER.

EXAMPLE: FOR 3.0 MM (.118") SHEATH SIZE: T-91N-12(.118)AE(9.3)O

SPECIAL TESTING

SPECIAL NON-DESTRUCTIVE TESTING IS AVAILABLE ON IN-PROCESS AND FINISHED THERMOCOUPLE ASSEMBLIES. TYPE OF TESTS AVAILABLE INCLUDE: THERMOCOUPLE TEMPERATURE CALIBRATION (TEMP VS. EMF), RADIOGRAPHY, LIQUID PENETRANT, HELIUM LEAK, DIMENSIONAL, & INSULATION RESISTANCE. ALL ARI STANDARDS ARE TRACEABLE TO THE NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY (NIST). ARI'S QUALITY MANAGEMENT SYSTEM MEETS THE REQUIREMENTS OF ISO 9002 AS CERTIFIED BY LLOYDS REGISTER QUALITY ASSURANCE.

SPECIAL PRODUCTS

BARE WIRE THERMOCOUPLE ELEMENTS

ARI CAN SUPPLY UN-SHEATHED BARE WIRE THERMOCOUPLE ELEMENTS WHERE QUICK TIME RESPONSE AND ACCURATE TEMPERATURE MEASUREMENTS ARE CRITICAL.

ELEMENTS CAN BE SUPPLIED IN THREE (3) STANDARD DIAMETERS, CUSTOM BUILT TO YOUR LENGTH REQUIREMENTS. TYPE R, S, AND B ARE SUPPLIED WITH A STANDARD BEAD TYPE JUNCTION, WHILE TUNGSTEN RHENIUM TYPES C AND D (ARI TYPE AE AND AO) ARE SUPPLIED WITH OUR PATENTED WIRE WOUND JUNCTION TYPE (9.3).

SPECIFY ARI P/N T-50994 - (L) - (D) - (TYPE)

(L) --- SPECIFY LENGTH IN INCHES (D)--- SPECIFY WIRE DIAMETER (.010, .020 OR .032) (TYPE) --- SPECIFY WIRE TYPE (R, S, B, AE OR AO)

CERAMIC PROTECTION TUBE ASSEMBLIES

ARI OFFERS A VARIETY OF CERAMIC PROTECTION TUBE ASSEMBLIES FOR APPLICATIONS WHERE EXTREME TEMPERATURES AND ATMOSPHERES ARE TOO SEVERE FOR METAL TUBES. OUR DESIGNS ARE BUILT PER YOUR EXACTING SPECIFICATIONS:

MATERIAL TYPE	GRADE	LETTER CODE	MAXIMUM RECOM. TEMP.	THERMAL SHOO RESISTANCE	CK COMMENT
ALUMINA	MIN. PURITY 99.7%	AL	1800°C	FAIR	GAS TIGHT. EXCELLENT IN OXIDIZING AND REDUCING ATMOSPHERES
SILICON CARBIDE	MIN. PURITY 75-90%	SiC	1400°C	GOOD	VERY HIGH THERMAL CONDUCTIVITY
RECRYSTALLIZED SILICON CARBIDE) MIN. PURITY 99 %	RSiC	1600°C	VERY GOOD	GOOD MECHANICAL STRENGTH CAN WITHSTAND UP TO 2000°C IN PROTECTED ATMOSPHERES
HEXOLOY®	SINTERED	HEX	1650°C	EXCELLENT	EXCEPTIONAL CORROSIVE / CHEMICAL RESISTANCE IN OXIDIZING /REDUCING ENVIRONMENTS
HEXOLOY® IS A REGISTERED TRADEMARK OF CARBORUNDUM CORP.					

TRANSITION STYLE THERMOCOUPLES

WHEN EXOTIC APLICATIONS REQUIRE LONG THERMOCOUPLES WITH EXPENSIVE NOBLE METAL OR REFRACTORY SHEATHS, ARI CAN SUPPLY CUSTOM MADE TRANSITION STYLE THERMOCIOUPLES FOR SUBSTANTIAL COST SAVINGS. THERMOCOUPLES CAN BE SUPPLIED WITH SUITABLE HIGH TEMPERATURE "HOT SECTION" SHEATH AND INSULATING MATERIALS LONG ENOUGH TO REACH A COOLER ZONE IN THE FURNACE OR REACTOR (MAXIMUM 870°C). AT THIS POINT, A BRAZED TRANSITION CAN BE MADE TO A LESS EXPENSIVE THERMOCOUPLE OR COMPENSATING MATERIAL WITH INCONEL 600 OR ST/ST SHEATH. CONTACT ARI FOR SPECIFIC PART NUMBERS AND SPECIFICATIONS.

SPECIAL REFRACTORY SHEATHS

IN ADDITION TO THE SHEATHS LISTED IN TABLE 2, ARI CAN ALSO PROVIDE THE FOLLOWING SHEATHS ON SPECIAL ORDER. CONTACT ARI FOR DIMENSIONS AND AVAILABILITY:

SHEATH TYPE	LETTER CODE	RECOMMENDED MAXIMUM TEMP	MELTING TEMP	COMMENTS
TUNGSTEN	BC	2300°C	3410°C	VERY HIGH MELTING POINT AND LOW VAPOR PRESSURE FOR VACUUM APPLICATIONS
MOLYBDENUM 50% RHENIUM	BE	2300°C	2550°C	EASILY WELDABLE AND DUCTILE UP TO 2200°C SUITABLE FOR INERT, VACUUM, HYDROGEN , NITROGEN, AND AMONIA ATMOSHERES
UCAR® METAL CERAMIC LT-1 TUBES	BV	1371°C	1538°C	SUITABLE FOR VARIOUS MOLTEN METALS AND CORROSIVE GASES
MOLY DISILLICIDE	BW	1700°C	VARIES	CAN BE USED IN AIR UP TO 1700°C. SUITABLE FOR HEAT TREATING, SINTERING AND GLASS APPLICATIONS.

SPECIAL COATINGS FOR SHEATHS

IN ADDITION TO THE COATED MOLYBDENUM SHEATH (OCR) SHOWN IN TABLE 2, THE FOLLOWING COATINGS ARE ALSO AVAILABLE:

COATING TYPE	LETTER CODE	MAXIMUM TEMP	COMMENTS
TUNGSTEN (PLASMA SPRAY)	TPL	2200°C	FOR RESISTANCE TO GRAPHITE ATTACK IN VACUUM APPLICATIONS. APPLIED TO MOLYBDENUM SHEATH.
BORON NITRIDE	BN	1800°C	NON-WETTING WITH MOST MOLTEN METALS AND SLAGS. USE IN OXIDIZING ATMOSPHERES TO 1100°C

HIGH TEMPERATURE SECTION: 12.7 mm (0.5 in.) diameter LENGTHS FROM 76.3 to 433 mm (3 to 17 in.)

SUPPORT SECTION "A":15.9 mm (0.625 in.) diameter LENGTHS FROM 102 to 1525 mm (4 to 60 in.)

TOTAL LENGTH "L": 178 mm (7 in.) minimum, 1960 mm (77 in.) maximum

This thermocouple may be used for temperatures above the Chromel/Alumel range in environments that either destroy or render Platinum-Rhodium thermocouples ineffective due to drift or ageing affects. The refractory Tungsten 5% Rhenium/ Tungsten 26% Rhenium element is protected against contamination or oxidation thru the unique double insulation-double wall construction that selectively eliminates all but the beneficial diffusion of Hydrogen. Internal thermocouple junction reliability is maintained thru a new (patent pending) wire wrap/ welding procedure to eliminate the problems associated with thermal cycling welded junctions on refractory wires. This sensor combines the stability and sensitivity (4.4microvolts per ° C.) of the new refractory thermocouple combinations with the atmospheric resistance and strength of cermets.

ARi is a Registered US Trademark

BULLETIN 2.2 JULY 1998

Primary Cermet Well, 0.5" O Secondary She	D., Permeable to O2, CO, CO: eath, ARi ''OCR'', Permeable	2, H2 to H2 Only
		15.9 mm (.63 in.) diam. Stainless Steel Support Section with Secondary Pressure Block
Refractory Magnesium Oxide Insulation ARi Calibrat Refractory E Not Affected	ion AE (W5 Re/W26 Re) Tement Thermocouple	Permanent Metallic Primary Well to ST/ST Bond 540°C MAX. (1000°F.)

APPLICATION

- · Gas generator temperature indication and control
- Metal annealing, hardening and deoxidizing furnaces
- Calcining and glazing Kiln temperature survey and control
- Temperature control for alternating oxidizing and reducing processes
- Ceramic firing systems
- Diffusion furnaces
- Commercial 816 to 1600°C (1500 to 3000°F) ovens
- Liquid steady state metal temperature surveys in Aluminum, Tin, Copper, Copper-Silver alloys, Lithium
- Long term temperature indication for baths with acid salts and corrosive acids (Cyanide salts and molten borax excluded)
- Sulfur Recovery Unit, refractory protection

INSTALLATION

Compression fitting (1/2" NPT) with metal ferrule supplied with each sensor for immersion control and pressure tight mounting to any pre-drilled and tapped chamber wall. Insert threaded end and wrench tighten using hex head adjacent to threads. Insert thermocouple thru hex head cap to desired immersion depth. Tighten cap 1/4 turn beyond finger tightness.

Note: Thermocouple head is supplied with the necessary compression fitting for attachment to probe. Attach wires, tighten compression fittings on thermocouple head prior to process installation.

HOW TO ORDER

Specify Part Number T-5590-"L" AE "A" giving variables such as "L" and "A" dimensions in inches.

EXAMPLE: T-5590 - 30AE15 L=30 in., A=15 in.

HIGH TEMPERATURE SECTION ("L"-"A"): 19mm (.75") diameter cermet well to 430mm (17") long on the standard design.

SUPPORT SECTION ("A"):

25.4mm (1") diameter stainless steel support section 50 to 1500mm long (2" to 60"). Bonded to High Temp. Section.

TOTAL LENGTH ("L"):

178mm (7") minimum, 1930mm (76") maximum.

The T-50230 thermocouple was developed as a more rugged version of the T-5590 thermocouple (ARi Bulletin 2.2) for the extreme environments found in sulfur recovery units and coal gasification reaction zones. It may be used in both oxidizing or reducing atmospheres and applications requiring resistance to H_2S or SO_2 that are destructive to platinium alloy and common base metal thermocouples. The Tungsten 5% Rhenium/Tungsten 26% Rhenium element is protected against contamination or oxidation thru the unique double insulation-double wall construction that selectively eliminates all but the beneficial diffusion of Hydrogen. Internal thermocouple junction reliability is maintained thru a new patented wire wrap/welding procedure to eliminate the problems associated with thermal cycling welded junctions with refractory wires. Toxic gas leakage or bypass flow thru the connection head is eliminated as a result of the unique double concentric well approach and secondary wire seal at connection head end.

ARi is a Registered US Trademark

BULLETIN 2.3 FEBRUARY1997

ACCESSORY EQUIPMENT

COMPENSATING LEAD WIRE

For conduit wiring: $427^{\circ}C(800^{\circ}F)$ max. use ARi part number 01-2AEX-G/G-24 with fiberglass insulation over each and over the pair. Note: Should not be used in conduit where standing water or steam are present. Use ARi part number 01-2AEX-T/T 20 flexible teflon leadwire to avoid the effects of moisture.

TRANSMITTER

Style T-50230 can be provided with a 4-20 ma DC two wire transmitter, ARi part number 47042-AE-(temperature range), to eliminate the need for thermocouple lead wire. The transmitter is mounted in the cast iron connection head in place of the ceramic terminal block. The assembly is designated as TX-50230-(L)AE(A). Zero and span trimpots allow adjustment to \pm 10% minimum. Standard Ranges 0-1600°C or 0-3000°F available.

SELF-CONDUIT PERMANENT WIRING:

For 870° C (1600° F) max, use ARi part number 125-2M-B(AEX)-24 AerOpak mineral insulated cable, 3.2mm (0.125") diameter stainless steel sheath, compacted MgO insulation, AWG 24 compensating wires (Hoskins 405 and 426 alloy). Cable ends require epoxy sealing to prevent moisture entry. May be formed by hand as a replacement for conduit-lead wire approach. Max. length is 100 ft. See Bulletin 6 for PTM-D2SS compression fittings used for mounting.

DIGITAL THERMOMETER MODEL 640

Field selectable Fluke DTI, ARi part number 640 AE DTI, 100 to 2000°C or 200 to 4000°F digital (.56", 14mm character size) indication from ARi type "AE" W5Re/W26Re thermocouples. Accuracy (to AE temp/EMF table) \pm 6°C with T/C break indication and 1° max. error due to common or series mode AC signal injection. Power requirement: 115/230V, 50/60 HZ, 10 watts. Panel mounted.

ORDERING INFORMATION -

- PROBE: Specify T-50230-(L)AE(A) add (L) and (A) in inches.
- LEAD WIRE: Specify part number, length of each piece, and quantity.
- DIGITAL THERMOMETER: Specify model number and quantity.

Ri Industries, Inc.

BULLETIN 3.0

Features:

- Cut Start-up Time
- Operating Safety
- Minimize Fuel Waste
- Increase Tube Reliability
- Increase Tube Life
- Avoid Forced Boiler Shutdown
- Lower Maintenance Cost
- Prevent "Steam Starvation" of Super-heater Tubes
- Allow Complete Control of Flow and Fuel

SENSES TUBE SURFACE TEMPERATURE TO BETTER THAN $\pm 2\%$ ACCURACY

AEROPAD, A PAD TYPE THERMOCOUPLE ESPECIALLY DESIGNED FOR HIGHLY ACCURATE AND TROUBLE FREE MEASUREMENT OF TUBE SKIN TEMPERATURE.

AerOpad Thermocouples are designed for welding direct to boiler or process tubes. They sense tube surface temperatures to $1100^{\circ}C$ ($2012^{\circ}F$) with a corrected accuracy of at least $\pm 2\%$. Normally furnished with a Type 310 stainless steel sheath over the compacted magnesium oxide insulation, with type "K" thermocouple wires. The thermocouples can be provided with a sheath of Hastelloy X Alloy for superior resistance to the most corrosive atmospheres. AerOpad Thermocouples are easy to install, yet rugged enough to withstand the roughest handling. They have a usable range of –240 to $1100^{\circ}C$ (-400 to $2012^{\circ}F$.)

ARi Industries, Inc. 381 ARi Court Addison, IL 60101 Phone: 800-237-6725 Fax: 630-953-0590

www.ariindustries.com Email: sales@ariindustries.com Division of Okazaki Manufacturing Company

Type E Type J Type K Туре Т

Type B Type R

Type S

Туре С

Type D

Available Products:

20.6

381 ARi Court Addison, IL 60101 Fax: 630-953-0590 Phone: 800-237-6725 www.ariindustries.com Email: sales@ariindustries.com Division of Okazaki Manufacturing Company

Thermowells Temperature transmitters MGO insulated conductor cable. 1 to 10 wire designs Self Powered Neutron Metal sheathed electric heater cable: Stocked sizes Single ended Double ended Custom lengths Multiple circuits Custom formations Heated & unheated sections Vacuum designs

High Temp. Heat Tracing

Tubular heater assemblies.

Flexible silicone rubber heaters.

ISO-9001-2000 Certified.

Custom testing available: X-Ray Helium Leak Heat Treating Temperature calibration (traceable to NIST)

www.ariindustries.com Email: sales@ariindustries.com Division of Okazaki Manufacturing Company

ARi Industries, Inc.

www.ariindustries.com

Phn: 800-237-6725

ARi's Product Overview

ARi is Manufacturer of mineral insulated heaters, thermocouples, RTD's, Metal-sheathed cable. Our designs/products are being used in semiconductor, FPD, and vacuum furnace applications. Our heaters are used for industrial process heating, Aerospace applications, and have reached Mars. All base metal thermocouple types available. Noble and refractory metal types sensors suitable for vacuum service up to 2200°C. Both standard and custom products available.

ARi is a ISO 9001-2000 registered company

ARi Industries, Inc. 381 ARi Court Addison, IL 60101 Phone: 800-237-6725 Fax: 630-953-0590 www.ariindustries.com Email: sales@ariindustries.com Division of Okazaki Manufacturing Company

Available Products:

Mineral insulated cable Base metal T/C cable: Type E Type J Type K Type T Nobel metal T/C cable: Type B Type R Type S Refractory T/C cable: Tungsten Rhenium Type C Type D

Multipoint T/C assemblies for temperature profiling.

Fan Junction for furnace tube temperature sensing:

Stainless Steel Sheaths Hastelloy-X Sheaths

Nuclear grade T/C's.

RTD assemblies

Thermowells

Temperature transmitters

MGO insulated conductor cable. 1 to 10 wire designs

Self Powered Neutron Detectors.

Metal sheathed electric heater cable: Stocked sizes Single ended Double ended Custom lengths Multiple circuits Custom formations Heated & unheated sections Vacuum designs High Temp. Heat Tracing

Tubular heater assemblies.

Flexible silicone rubber heaters.

ISO-9001-2000 Certified.

Custom testing available: X-Ray Helium Leak Heat Treating Temperature calibration (traceable to NIST)

ARi Industries Inc.

FAN JUNCTION THERMOCOUPLES

For reliable and continuous tube temperature measurement in fired heaters

- More accurate measurement on tube surface
- Expansion coil compensates for all tube movement in-process
- · Unique fan head design welds better

Furnace heater tube skin temperature measurements often vary greatly (+/-30°C) from the actual level, owing to the ambient conditions of air and flame around the tube. This can lead to significantly higher readings than the actual tube OD. Also, narrow-tipped thermocouple designs can cause a higher than actual tube temperature reading, due to improper contact with the tube surface, while shielded tips can result in lower than actual readings, because they insulate part of the tube from heat flux.

The A.Ri fan junction thermocouple head design offers superior heat transfer for improved accuracy, better than +/-4.5°C at ~500°C, as well as easier welding to the tube surface for improved installation integrity. Proper attachment of the sensor head to the tube surface is critical and the unique ARi design enables a more secure weld.

In addition, this **ARI** thermocouple features **Hastelloy X** sheath material, with excellent corrosion and heat resistance. It can be Unique fan head design

manufactured in longer lengths and the standard 5/16" sheath is much more ductile and formable than 446 S.S., when required. This in-field formability allows the creation of expansion coils to offset heater tube movement. Because **ARi** manufactures its own compacted magnesium oxide mineral-insulated wire and cable, custom designs with quick delivery are our standard.

The **ARi** fan junction thermocouple is recommended for 2" or larger OD tubes. It joins the broad range of **AerOpad®** sensor products from **ARi**, a leader in process temperature measurement.

With ARi fan junction thermocouples on your process furnace tubes, y @u can:

- Minimize fuel waste
- Increase tube life
- Lower maintenance costs
- Avoid more shutdowns
- Prevent steam starvation

This product is currently used by most of the world's major refinery operators, including **BP**, **Chevron Texaco**, **Exxon Mobil**, **Elf** and others.

Web: www.ariindustries.com Email: sales@ariindustries.com

ARi Indstries, Inc

The Quality Standard for Mineral Insulated Cable.

Usable under severe conditions that can destroy other types of thermocouple cable.

Withstands temperatures up to metal melting points.

Withstands corrosive conditions that are limited only by the choice of the outer sheath material.

Can be formed around a solid mandrel that is 2X's the sheath diameter without loss of integrity.

Can be welded, brazed, or soldered to other metals when proper techniques are used.

Variety of stock sizes, thermocouple types, and sheath materials available from ARi for immediate shipment.

AerOpak Thermocouple Cable

The quality standard for mineral insulated cable

AerOpak[®] is made as either thermocouple, and/or conductor cable wire in compacted ceramic insulation encased in a metallic sheath. Conductor or thermocouple wires can range in quantity from 1 to 10 wire construction.

Compacted Ceramic Powder - Magnesia is one typical electrical insulating material used as the electrical insulation between each wire and the outer sheath. Other

insulations available as needed for application specific needs.

Outer Seamless Metal Sheath - A variety of seamless metallic outer sheath materials provide environmental protection for the insulated conductors or sensor wires inside the cable. Sheath selection is typically application specific to provide the longest life possible for the application that the cable is to be used or subjected to.

Custom sizes and custom cable constructions are available - Let our sales engineers help assist you in selecting the proper fit to meet today's demanding requirements.

ARi Industries, Inc.® 381 ARi Court Addison, IL 60101 Phone: 800-237-6725 Fax: 630-953-0590

www.ariindustries.com Email: sales@ariindustries.com Division of Okazaki Manufacturing Company

BULLETIN 4.0

AerOpak[®]- Sheath & Conductor Specifications (Pg. 2

Phn: 800-237-6725

Sheath Material	ARI	Melting temperature		Maximum Temperature in Air		
	Symbol	F	С	F	С	
ANSI 304 ST/ST	А	2550	1400	1650	900	
ANSI 310 ST/ST	D	2550	1400	2000	1090	
ANSI 316 ST/ST	С	2500	1370	1650	900	
ANSI 347 ST/ST	F	2550	1400	1650	900	
ANSI 446 ST/ST	AG	2600	1430	2000	1090	
INCONEL 600	B(1)	2470	1350	2000	1090	
HASTELLOY X	V	2300	1260	2200	1200	
(1) Not recommended for use in sulfur atmosphere						

BULLETIN 4.0

For wall thickness and wire size information refer to ASTM E-585.

Wire size to at least 15% of sheath O.D. with 10%

(1) Not recommended for use in sulfur atmosphere

Stocked thermocouple cable list showing: Cable O.D., Wire Type, Sheath material							
Cable O.D.'s	A 304	C 316	D 310	F 347	B Inconel 600	V Hastelloy X	MFG Length (Ft)
0.020	KN	к			JK		Varies
0.040	JK	J		EJK	EJK	K	600
0.062	JK	JKT	JK	EJK	EJ K	K	1000
0.120			К				700
0.125	EJK	E JK T	E J K	JK	EJK	K	700
0.188	EJK	EJK ⊤	JK	JK	E JK	K	250
0.236			К		К		250
0.250	EJK	E JK T	JKE	JKE	EJK	K	250
0.313		к	к		К	К	100
0.375	JK	JKT	JK		JK	K	80
0.500			к		К	K	30
0.625		К			К		25
0.750					К		25

Calibration letters in **BOLD** indicate also available in DUPLEX (4 - wire construction) from stock

Calibration Temperature Range	ARi Symbol	Calibration Tolerances Use nominal value or percentage (whichever is greater).
Chromel - Alumel 32°F (0°C) to 2300°F (1260°C)	K	Standard Grade: 4.0°F(2.2°C) or 0.75% of reading. Special Grade: 2.0°F(1.1°C) or 0.4% of reading.
Chromel - Constantan 32°F (0°C) to 1600°F (870°C)	Е	Standard Grade: 3.1°F(1.7°C) or 0.50% of reading. Special Grade: 1.8°F(1.0°C) or 0.4% of reading.
Iron - Constantan 32°F (0°C) to 1400°F (760°C)	J	Standard Grade: 4.0°F(2.2°C) or 0.75% of reading. Special Grade: 2.0°F(1.1°C) or 0.4% of reading.
Copper - Constantan 32°F (0°C) to 700°F (370°C)	Т	Standard Grade: 1.8°F(1°C) or 0.75% of reading. Special Grade: 0.9°F(0.5°C) or 0.5% of reading.
Nicrosil - Nisil 32°F (0°C) to 2300°F (1260°C)	Ν	Standard Grade: 4.0°F(2.2°C) or 0.75% of reading. Special Grade: 2.0°F(1.1°C) or 0.4% of reading.
Calibration tolerances per AST	M F230 and	ANSI MC96 1

Calibration tolerances per ASTM E230 and ANSI MC96.1.

Special tolerances per AMS 2750D available upon request, stock is subject to current availability.

Phn: 800-237-6725

AerOpak[®] Thermocouple and Conductor Cable (Pg. 3)

Available Products:

Temperature Sensors

•

- Mineral insulated cable Base metal T/C cable: Type E Type J Type K Type T Nobel metal T/C cable: Type B Type R Type R Type S Refractory T/C cable: Tungsten Rhenium Type C Type D
- Multipoint T/C assemblies for temperature profiling.
- Fan Junction for furnace tube temperature sensing: Stainless Steel Sheaths Hastelloy-X Sheaths
- Nuclear grade T/C's.
- RTD assemblies
- Thermowell's
- Temperature transmitters

Conductor Cable Assemblies

 MGO insulated conductor cable. 1 to 10 wire designs

Neutron Detectors

• Self Powered Neutron Detectors.

Electric Heaters

- Metal sheathed electric heater cable:
 - Stocked sizes
 - Single ended Double ended Custom lengths Multiple circuits Custom formations Heated & unheated sections Vacuum designs High Temp. Heat Tracing
- Furnace brazed parts
- Tubular heater assemblies.
- Flexible silicone rubber heaters.

Quality System

ISO-9001-2000 Certified.

Testing Options / Services offered

- Custom testing available: X-Ray
 - Helium Leak Heat Treating Temperature calibration
- (traceable to NIST) Custom Furnace Brazing

Thermocouple Cable Ordering information:

- 1. Specify by description.
- Example: 1/16 inch Inconel 600 Sheath, Type K mineral insulated cable. 2. Specify by part number. The part number is defined per the following:

(EXAM	PLE) PART NUMBER 062 - 2N - BK Sheath Diameter (0.062 inch O.D.)
	Number of Conductors ———— (2 wires)
	Insulation Material MgO (Magnesium Oxide)
	Sheath Material (Inconel 600)
	Wire Material (Calibration K)

- 3. Specify total quantity. If cut lengths are required, specify length of each piece. Accuracy of a cut is +/- ½% of the length or +/-½ inch (12.7mm), whichever is largest.
- 4. Sizes of 0.188 inch (4.78mm) or less can usually be shipped by insured parcel post or UPS. Sizes of 0.250 inch (4.78mm) up to 0.375 inch (9.53mm) can be shipped UPS.
- 5. Standard shipping coil sizes and weight:

Sheath O.D. (inch)	Coil O.D. (inch)	Approx. weight @ 100Ft
0.020	20.22	0.2
0.040	20-22	0.3
0.062		0.9
0.120	20	2.5
0.125	30	3.3
0.188		7.0
0.236		10.8
0.250	12	12.3
0.313	42	19.5
0.375		27.0
0.500	Shinned straight.	50.0
0.625	20 Ft. Maximum	75.0
0.750	Lengths.	112.5

6. Shipping tolerance for random lengths is +15%, -10% unless specified otherwise.

ACKNOWLEDGEMENTS

ARi uses registered U.S. trademarks of others throughout this bulletin. The product and names supplied by the owners of these trademarks are well known and convenient identification to the user. They are:

Inconel and Incoloy - Registered U.S. Trademarks of International Nickel Company. Hastelloy X - Registered U.S. Trademark to Cabot Corporation.

Chromel and Alumel - Registered U.S. Trademark of Hoskins Mfg. Company. AerOpak - Registered U.S. Tradename of ARi Industries, Inc.

BULLETIN 4.0

Conductor cables can be manufactured from many ductile materials. Examples:

	ARI	Resistivity Resistance			
Wire Material	Symbol	@ 20°C Ohms/CMF	@ #30AWG (0.010" O.D)		
ANSI 304	304	430	4.3		
ANSI 347	347	430	4.3		
INCONEL 600	INC	620	6.2		
Oxygen Free Copper	CU	10.3	0.10		
Nickel Lo Carbon	NIL	60	0.60		
Constantan	AQ	294	2.94		
Chromel –P	KP	425	4.25		
Alumel	AY	177	1.77		
27%NI Clad Cu	NCU	15	0.15		

MI CARLE SPECIFICATION

Sheath Diameter:	\pm 0.002 inch (\pm 0.05mm) or \pm 1% of nominal diameter, whichever is greater
Wall Thickness:	± 0.0015 inch (± 0.04 mm) or $\pm 15\%$ of nominal wall thickness, whichever is greater, 10% of sheath diameter as a minimum
Wire Diameter	± 0.001 inch ($\pm 0.03mm$) or $\pm 10\%$ of nominal wife diameter, whichever is greater, 15% of sheath diameter as a minimum.
Thermocouple wire calibration:	To meet Standard Limits of Error tolerance on calibration as defined in ASTM E-230. Cable with calibration tolerances meeting Special Limits of Error are identified with the symbol "S" after the calibration symbol in the part number.
Insulation Resistance at room temperature:	AerOpak is shipped with room temperature insulation resistance greater then 1000 megohms@50VDC (sheath diameters of 0.080 inch to 0.040), and 1000 megohms@500VDC (sheath diameters of 0.120 inch and greater)
High Temperature Insulation Resistance:	For 0.040"diameter AerOpak at 600°F (316°C), insulation resistance for one foot length will be in excess of 10 megohms. For 0.62 inch diameter and larger AerOpak at 600°F (316°C), insulation resistance for one foot length will be in excess of 100 megohms.
Dielectric Strength:	These are reference values for application to conductor cable only. Data is at 60Hz and 70° F (21°C). Straight - 100VAC per mil of insulation thickness. Bent - 45VAC per mil of insulation thickness.
Temperature:	Insulation is usable over temperature range of –450°F (-270°C) to 3000°F (1650°C) without change of phase or chemical reaction with adjacent metals. Melting temperature of insulation is 4800°F (2640°C). Limiting temperature is associated with metals used.
Pressure:	Can withstand external pressure up to 50,000psi (3500kg/cm²)
Nuclear:	Insulation can be subjected to a mean neutron flux of 2X10 ¹¹ n.cm ⁻² S ⁻¹ @100°C and a total peak irradiation of 8X10 ¹⁸ n.cm ⁻² with no significant change in characteristics.
Formability:	AerOpak can be bent around a mandrel having a radius equal to twice the sheath diameter without rupturing sheath or causing loss of insulation resistance
Fabrication:	AerOpak sheath can be welded brazed and soldered without changing insulation resistance using normal care for the metals and thickness involved.
Storage & Shipping:	Each length of AerOpak cable is sealed at both ends with a silicone resin, or shrink sleeving, or both. This can be removed (preferably in a dry atmosphere) by a sharp knife or razor. This seal is suitable for short duration or air shipments. We suggest glob welding the cable ends for Ocean shipments, or when shipping to high humidity destinations.

ARi Industries, Inc. Phone: 800-237-6725 Fax: 630-953-0590 www.ariindustries.com Email: sales@ariindustries.com Division of Okazaki Manufacturing Company

Temperature Sensors

- **Available Products:** Mineral insulated cable Base metal T/C cable: Type E Type J Туре К Type T Nobel metal T/C cable: Type B Type R Type S Refractory T/C cable: Tungsten Rhenium Type C Type D Multipoint T/C assemblies for temperature profiling. Fan Junction for furnace tube temperature sensing: Stainless Steel Sheaths Hastelloy-X Sheaths Nuclear grade T/C's. **RTD** assemblies Thermowell's Temperature transmitters **Conductor Cable Assemblies** MGO insulated conductor cable. 1 to 10 wire designs **Neutron Detectors** Self Powered Neutron Detectors. **Electric Heaters**
- Metal sheathed electric heater cable:
 - Stocked sizes

•

- Single ended
- Double ended
- **Custom lengths**
- Multiple circuits
- **Custom formations** Heated & unheated sections
- Vacuum designs
- High Temp. Heat Tracing
- Furnace brazed parts Tubular heater assemblies.
- Flexible silicone rubber heaters.

Quality System

ISO-9001-2000 Certified.

Testing Options / Services offered

- Custom testing available: X-Ray Helium Leak Heat Treating Temperature calibration (traceable to NIST)
- **Custom Furnace Brazing**

HIGH TEMPERATURE **AEROPAK®** THERMOCOUPLE CABLE

Metal Sheath, Ceramic Insulated Thermocouple Cable

For use at: 1100° C to 2200° C (2012° F to 3992° F)

ARi has developed a complete line of metallic sheath ceramic insulated thermocouple cable for operation in the range of 1100° C (2012° F) to 2200° C (3992° F). This is a high quality product employing clean room techniques in manufacturing and inspection. It is useable either for fabrication of high temperature thermocouples or leadwire cable for thermocouples. See ARi Bulletin 2.0 for a complete line of finished thermocouples.

INDUSTRIES:

Furnaces, High Temperature Laboratories, Research Nuclear Reactors Petrochemical Aerospace Glass Processing Heat Treating Gas Turbine Jet Engine Refractory Metal

ARi is a Registered U.S. Trademark

ARi Industries, Inc 381 Ari Court Addison, IL 60101 800-237-6725 Phone 630-953-9100 Phone 630-953-0590 Fax

BULLETIN 4.1
HIGH TEMPERATURE AEROPAK® THERMOCOUPLE CABLE TECHNICAL INFORMATION

SPECIFICATIONS:

1. Materials

A. SHEATH

Material	ARi Symbol	Max. Usage Temp. °C	Environment
Inconel 600(1)	В	1150	Inert Vacuum Oxidizing
Platinum 6%	AA	1650	Inert Oxidizing
Rhodium			
Tantalum	N	2200	Inert Vacuum
310 St/St	D	1050	Inert Vacuum Oxidizing

B. INSULATION

Material	ARi Symbol
Magnesia 99.4+% (MgO)	N
Berylia 99.4+% (BeO)	В

(1.) Registered U.S. Trademark, International Nickel Co.

2. Electrical Characteristics

INSULATION RESISTANCE:	Room temperature insulation resistance will be a minimum of 1000 megohms at 50 V.D.C. for 1 mm and 1.5 mm O.D. and 500 V.D.C. for 3.18, 4.78 and 6.35 mm O.D. Insula- tion resistance at 1000°C will be a minimum of 6100 ohms-meter at 6 volts D.C. Proper bending will not cause a loss of insulation resistance.	
WIRE HOMOGENITY:	Will be such that a sharp gradient of 800° C will produce not more than a ± 0.1 millivolt output.	

3. Physical

FORMABILITY: Forming is limited to a minimum inside bend radius of 5 sheath diameters for Inconel 600 and Platinum alloys and 10 diameters for Tantalum.

PRESSURE:	Can withstand external pressure of 3500 Kg/cm ² at room temperature.
FABRICATION:	AerOpak [®] can be GTAW welded and brazed without changing insulation resistance. Welding on Tantalum must be done in either vacuum or inert atmosphere.
	Random lengths will be provided unless requested otherwise. Specific lengths are available in all standard products, up to the maximum single length indicated in the Tables. Length tolerance: ± 15 cm.
	Each section of AerOpak [®] is moisture-sealed at both ends with a suitable resin. When ordering, allow 2.5 cm to be removed from each end. Both ends can be provided with a storage seal (seal welding) in place of the temporary resin seal.
	AerOpak [®] in straight lengths will have a curvature not exceeding 6 mm in 1 meter as measured against a straight edge lying free.
DIAMETER:	Shall be within ±.05 mm of nominal. Ovality will not exceed 0.003 mm.
INTEGRITY:	There shall be no porosity, inclusions, pit or scratches which exceed 10% of wall thickness, or 0.003 mm (whichever is greater).

C. THERMOCOUPLE WIRE

Material	ASTM E-230-81 Symbol	ARi Symbol	Calibration Tolerance Limits of Error		
Platinum 13% Rodium-Platinum	R	R	±1.5° C from 0 to 600° C ±25% from 600° C to 1450° C		
Platinum 10% Rhodium-Platinum	S	S			
Platinum 30% Rhodium Platinum 6% Rhodium	В	В	±0.5% 800 to 1700°C		
Tungsten 5% Rhenium Tungsten 26% Rhenium		AE	±4.44°C to 427°C ±1% from 427°C to 2315°C		

CLASS I UP TO 1100°C (2012°F) MgO (N) INSULATION

	SHEA	TH DIA.	WIRE	E DIA.	SHEATH	WIRE	MAX. LENGTH**	
PART NUMBER	mm	inch	mm	inch	MATERIAL	MATERIAL	Meter	inch
020-2N-DR-40	0.50	0.020	.076	.003	310 St/St	Pt/Pt13Rh	10.7	420
040-2N-BR-34	1.00	0.040	.152	.006	Inconel	Pt/Pt13Rh	11.6	456
040-2N-BS-34	1.00	0.040	.152	.006	Inconel	Pt/Pt10Rh	11.6	456
040-2N-BB-36	1.00	0.040	.152	.006	Inconel	Pt30Rh/Pt6Rh	11.6	456
060-2N-BR-31	1.50	0.060	.229	.009	Inconel	Pt/Pt13Rh	18.3	720
062-2N-DS-30	1.58	0.062	.254	.010	310 St/St	Pt/Pt10Rh	18.3	720
062-2N-BR-30	1.58	0.062	.254	.010	Inconel	Pt/Pt13Rh	18.3	720
062-2N-BS-30	1.58	0.062	.254	.010	Inconel	Pt/Pt10Rh	18.3	720
062-2N-BB-30	1.58	0.062	.254	.010	Inconel	Pt30Rh/Pt6Rh	18.3	720
120-2N-BR-30	3.00	0.120	.254	.010	Inconel	Pt/Pt13Rh	18.3	720
125-2N-DS-24	3.18	0.125	.508	.020	310 St/St	Pt/Pt10Rh	18.3	720
125-2N-DS-30	3.18	0.125	.254	.010	310 St/St	Pt/Pt10Rh	18.3	720
125-2N-BR-24	3.18	0.125	.508	.020	Inconel	Pt/Pt13Rh	18.3	720
125-2N-BR-30	3.18	0.125	.254	.010	Inconel	Pt/Pt13Rh	18.3	720
125-2N-BS-24	3.18	0.125	.508	.020	Inconel	Pt/Pt10Rh	18.3	720
125-2N-BS-30	3.18	0.125	.254	.010	Inconel	Pt/Pt10Rh	18.3	720
*125-4N-BS-29	3.18	0.125	.279	.011	Inconel	Pt/Pt10Rh	18.3	720
125-2N-BB-30	3.18	0.125	.254	.010	Inconel	Pt30Rh/Pt6Rh	18.3	720
188-2N-BR-26	4.78	0.188	.406	.016	Inconel	Pt/Pt13Rh	7.9	310
188-2N-BS-26	4.78	0.188	.406	.016	Inconel	Pt/Pt10Rh	7.9	310
250-2N-BR-24	6.35	0.250	.508	.020	Inconel	Pt/Pt13Rh	18.3	720
250-2N-BS-24	6.35	0.250	.508	.020	Inconel	Pt/Pt10Rh	18.3	720
250-2N-BB-24	6.35	0.250	.508	.020	Inconel	Pt30Rh/Pt6Rh	18.3	720

CLASS II UP TO 1650°C (3000°F) MgO (N) INSULATION

PART NUMBER	SHEAT	ATH DIA. WIRE D		DIA.	SHEATH	WIRE	MAX. LENGTH**	
	mm	inch	mm	inch	MATERIAL	MATERIAL	Meter	Inch
040-2N-ARR-34	1.00	0.040	.152	.006	Pt6Rh	Pt/Pt13Rh	1.5	60
040-2N-AAS-34	1.00	0.040	.152	.006	Pt6Rh	Pt/Pt10Rh	1.5	60
040-2N-NR-34	1.00	0.040	.152	.006	Tantalum	Pt/Pt13Rh	3.6	140
040-2N-NS-34	1.00	0.040	.152	.006	Tantalum	Pt/Pt10Rh	3.6	140
040-2N-NAE-36	1.00	0.040	.127	.005	Tantalum	W5Re/W26Re	2.2	88
062-2N-AAR-30	1.58	0.062	.254	.010	Pt6Rh	Pt/Pt13Rh	1.5	60
062-2N-AAS-30	1.58	0.062	.254	.010	Pt6Rh	Pt/Pt10Rh	1.5	60
062-2N-NR-30	1.58	0.062	.254	.010	Tantalum	Pt/Pt13Rh	5.1	200
062-2N-NS-30	1.58	0.062	.254	.010	Tantalum	Pt/Pt10Rh	5.1	200
062-2N-NAE-30	1.58	0.062	.254	.010	Tantalum	W5Re/W26Re	2.2	88
125-2N-AAR-30	3.18	0.125	.254	.010	Pt6Rh	Pt/Pt13Rh	1.5	60
125-2N-AAS-30	3.18	0.125	.254	.010	Pt6Rh	Pt/Pt10Rh	1.5	60
125-2N-NR-30	3.18	0.125	.254	.010	Tantalum	Pt/Pt13Rh	4.6	180
125-2N-NS-30	3.18	0.125	.254	.010	Tantalum	Pt/Pt10Rh	4.6	180
125-2N-NAE-30	3.18	0.125	.254	.010	Tantalum	W5Re/W26Re	2.2	88

CLASS III UP TO 2200° C (3992° F) BeO (B) INSULATION

	SHEATH DIA.		WIRE	DIA.	SHEATH	WIRE	MAX. LENGTH**	
PARTNUMBER	mm inch mm		inch	MATERIAL	MATERIAL	Meter Inch		
062-2B-NAE-30	1.58	0.062	.254	.010	Tantalum	W5Re/W26Re	2.2	88
125-2B-NAE-30	3.18	0.125	.254	.010	Tantalum	W5Re/W26Re	2.2	88

* Duplex Wires (4 Wires)

** Lengths supplied will be between 18 inches to maximum length shown

MADE TO ORDER

ARi can supply mineral insulated cable for high temperature applications with other materials, such as:

- A. Niobium 1% Zirconium Sheath
- B. Tungsten 3% Rhenium/Tungsten 25% Rhenium Thermocouple Wires

ARi Industries, Inc 381 ARi Court Addison, IL 60101 800-237-6725 Phone 630-953-9100 Phone 630-953-0590 Fax

WebSite: http://www.ariindustries.com E-Mail: sales@ariindustries.com ARi Industries, Inc 381 ARi Court Addison, IL 60101 800-237-6725 Phone 630-953-9100 PHone 630-952-0590 Fax

http://www.ariindustries.com E-Mail: sales@ariindustries.com

AEROPAK® THERMOCOUPLE & CONDUCTOR CABLE

HELPFUL HINTS TO USE AEROPAK®

EXPOSING WIRE — Wire can be exposed by removing the sheath in a lathe. The cable (AerOpak®) is chucked in the headstock with length of about 10 x diameter exposed. Use a small tool, high speed, and light cuts. Wire can also be exposed by using a saw or file or sheath stripper. A complete cut through the tube should be made about 1/4 inch from the end. The cut portion is then squeezed until the MgO powder drops out leaving the sheath loose. This process can be repeated until the desired length of wire is exposed. Commercial sheath strippers are available.

STORAGE SEALING — Material supplied has been sealed at exposed ends to prevent moisture absorption. When cutting special lengths, the exposed ends should be coated with a plastic varnish by either dip or brush method or other suitable technique. We recommend using Dow Corning Silicone Resin I-2577 for a temporary seal and welding if a permanent moisture block is desired. Remove moisture from insulation before resealing.

ANNEALING — Anneal in reducing or neutral atmosphere to relieve cold work added by forming or bending. Follow standard procedure for annealing stainless steel unless enclosed wires are of a material not compatible with this procedure.

BENDING — Bending can be accomplished with ordinary tube benders. Material can be bent to a minimum radius of 2 sheath diameters. It is advisable to make sure that the region of bending is annealed after forming. Repeated flexing at one point will result in work hardening and eventual fracture of sheath.

WELDING — Any form of welding may be performed upon the sheath without destroying the insulation. Avoid welding on sheath when adjacent to low temperature materials. Remove moisture before welding. If moisture is not removed and material is subjected to high temperature, rupture of the sheath may occur from the steam generated.

HIGH TEMPERATURE SEALING — ARi has developed a patented sealant known as AerOseal® to prevent moisture absorption by the ceramic. This seal is effective over the temperature range of -240 to +420°C (-400 to +788°F). It can withstand thermal shock from 420°C (788°F) to -185°C (-300°F) in 2 seconds. Exposure to temperatures above 420°C (788°F) will cause the seal to deteriorate without affecting insulation resistance properties.

PRECAUTIONS:

- Remove storage seal from ends before processing material; otherwise, varnish can burn to carbon and short out the conductors. We suggest cutting off 1/4" of varnished ends. Do not use solvents to remove seal. Shrink tube seals may be cut off.
- When welding or brazing, keep all fluxes away from exposed end of AerOpak[®]. These fluxes will soak into the insulation and cause a low resistance short.
- Keep exposed AerOpak[®] ends capped or sealed when not in use to prevent moisture absorption by ceramic insulation.
- To remove moisture, bake AerOpak® at 200° C (392° F) minimum in an oven until desired minimum insulation resistance is obtained. Seal exposed ends of AerOpak® immediately; exposed ceramic may absorb moisture in a matter of seconds in humid atmospheres.
- Avoid welding on sheath when adjacent to low temperature materials.
- Remove moisture before sealing both ends pressure tight. If moisture is not removed and material is subjected to high temperature, rupture of the sheath may occur.

CONDUCTOR CABLE ASSEMBLIES

For normal industrial use to severe service for high temperature, corrosive and exotic application.

ARI is a Registered US Trademark

- These cables complete with leads or connectors are ready for installation.
- Eliminate the replacement of cables which deteriorate in radiation, severe heat or corrosive environments.
- Stainless steel sheath construction and Mg0 insulation for the cable body. Hermetically sealed connectors for exposure up to 1600° F.
- Cables are flexible and can be obtained in large variety of sheath and conductor materials and outer diameters.
- Will assist in the design and manufacture of assemblies to suit your application.

AEROPAK[®] CONDUCTOR CABLE ASSEMBLIES

SPECIFICATIONS

100 200

Design No. C-200

CABLE	. available from 1/4" O.D. to 1/2" O.D. 300 series stainless steel or inconel 600 sheath, Mg0 insulation single conductors of 300 series st/st, inconel 600, nickel clad copper or copper.
SEAL	. hermetically sealed to AerOpak® cable, materials of nickel with ceramic insert voltage rating at room temperature of 1500 VDC Max. operating temperature - 1600° F.

Design No. C-201

CABLE	. available from 1/8" O.D. to 1/4" O.D. stainless steel or inconel 600 sheath, Mg0 insulation, up to (4) conductors of st/st, inconel 600 nickel clad copper or copper.
SEAL	. not hermetically sealed to AerOpak® cable, materials, aluminum with bakelite insert. Max operating temperature 500° F.

Design No. C-202

CABLE	. available from 1/8" O.D. to 1/2" O.D. stainless steel or inconel 600 sheath, Mg0 insulation, up to (6) conductors of st/st, inconel 600 nickel clad copper or copper.
SEAL	. hermetically sealed to AerOpak® cable, materials of stainless steel with glass insulated pins, Max operating temperature 500° F.

Notes:

Cables must be supplied cut to length, sealed and connectors installed to assure insulation resistance. Bulk cable without connectors can be supplied in random lengths if desired with instructions for stripping the ends, but insulation resistances cannot be warranteed. TABLE 1

			Con	ductor	Dimen	sions						
					No. of	Wires						
C).D.		1		2 3		3	4				
No	minal		Nominal Wire Size in inches/mm									
in.	mm	in.	mm	in.	mm	in.	mm	in.	mm			
.500	12.7	.080	2.03	.080	2.03	.080	2.03	.080	2.03			
.375	9.55	.063	1.6	.063	1.6	.063	1.6	.063	1.6			
.313	8.00	.051	1.30	.051	1.30	.051	1.30	.051	1.30			
.250	6.35	.042	1.07	.042	1.07	.042	1.07	.042	1.07			
.188	4.75	.032	.81	.032	.81	.032	.81	.032	.81			
.125	3.18	.021	.053	.021	.053	.021	.053	.021	.053			

0	.D.		No. of Wires				
in.	mm	Temp. °F	1	2	3	4	
		500	10 ⁹	10 ⁸	108	108	
.500	12.7	1000	108	107	107	107	
		1500	106	10 ⁵	10 ⁵	105	
		500	109	10 ⁸	10 ⁸	108	
.375	9.55	1000	108	107	107	107	
		1500	106	105	10 ⁵	105	
.313	8.00	500	10 ⁹	108	10 ⁸	108	
		1000	107	106	10 ⁶	106	
		1500	106	105	10 ⁵	10 ⁵	
		500	108	107	107	107	
.250	6.35	1000	107	106	106	106	
		1500	106	105	10 ⁵	105	
		500	108	107	107	107	
.188	4.75	1000	107	106	10 ⁶	106	
		1500	106	105	105	105	
		500	10 ⁸	107	107	107	
.125	3.18	1000	107	106	106	106	
		1500	106	105	105	105	

TABLE 2

TA	DI	r	0
	K	-	
1 1		_	•

	Nominal Capacitance PFD/FT. at Room Temp.										
0	D				Number	of Wires	Boom Temp. B 4 W-S W-W W-S 104.7 67.0 118.0 99.7 64.9 115.9 102.8 71.5 125.7 98.0 69.1 117.5 91.7 65.6 110.9 90.5 64.0 108.6				
0.D.		1		2	2	3	3		4		
in.	mm	W-W	W-S	W-W	W-S	W-W	W-S	W-W	W-S		
.500	12.7	-	85.2	56.0	91.0	70.3	104.7	67.0	118.0		
.375	9.55	-	83.4	54.0	89.9	64.4	99.7	64.9	115.9		
.313	8.00	-	81.9	57.8	89.2	67.7	102.8	71.5	125.7		
.250	6.35	-	80.4	62.0	101.6	63.6	98.0	69.1	117.5		
.188	4.75	-	79.3	60.0	85.5	60.0	91.7	65.6	110.9		
.125	3.18	-	78.1	59.3	87.7	59.0	90.5	64.0	108.6		

Note: Capacitance PFD/ft. will not change appreciatively up to 1100° F (600° C)

AerOcoax[®] AerObiax[®] ELECTRIC HEATING CABLE

				and the second se	-	THE OWNER WATER OF THE OWNER WATER			
SHEATH DIAMETER		CONT RESIS		INSUL. SPACING		MAL GTH	SHEATH MATL.		
Inch ±0.005	mm ±0.13	Ohms/ft ±10%	Ohms/mtr ±10%	Inch ±15%	Feet See N	Meter lote 1	See Note 2		2
0.040	1.0	16.3	53.5	0.009	500	152	В	IHN040B-	16.3
.063	1.6	1.6	5.2	.011	1000	304	В	IHN063B-	1.6
.063	1.6	6.5	21.3	.014	200	61	В	IHN063B-	6.5
.080	2.0	3.9	12.8	.023	150	46	В	IHN080B-	3.9
.093	2.4	3.0	9.8	.023	700	213	В	IHN093B-	3.0
.093	2.4	1.5	4.9	.023	800	244	В	IHN093B-	1.5
.125	3.2	0.24	0.79	.018	900	274	В	IHN125B-	0.24
.125	3.2	0.40	1.3	.024	900	274	B	IHN125B-	0.40
.125	3.2	0.80	2.6	.030	900	274	В	IHN125B-	0.80
.125	3.2	1.6	5.2	.034	400	122	В	IHN125B-	1.6
.180	4.6	0.18	0.59	.033	400	122	В	IHN180B-	0.18
.180	4.6	0.73	2.4	.048	400	122	В	IHN180B-	0.73
.188	4.8	0.70	2.3	.051	800	244	В	IHN188B-	0.70
.250	6.4	0.35	1.1	.070	200	61	В	IHN250B-	0.35

AerOcoax®

AerObiax®

0.040	1.0	30.0	98.4	0.004	500	152	В	2HN040B-	30.0
.063	1.6	13.0	42.6	.007	200	61	В	2HN063B-	13.0
.093	2.4	6.0	19.7	.011	400	122	В	2HN093B-	6.0
.125	3.2	3.2	10.5	.016	900	274	В	2HN125B-	3.2
.188	4.8	1.4	4.6	.024	400	122	В	2HN190B-	1.4
.250	6.4	0.70	2.3	.031	200	61	В	2HN250B-	0.70

Note:

1. Lengths shown are normal manufactured length. However, due to cutting for specific ordered quantities, the lengths supplied will be between 15 feet (4 meters) and NORMAL LENGTH.

2. Sheath material is Inconel 600 (Symbol B).

BULLETIN 5.1

GENERAL NOTES

This cable is made by a multiple pass drawing operation. When shipped, the ends are sealed to prevent moisture absorption by the MgO insulation. Once the seal is broken, the MgO will absorb moisture from the atmosphere and rapid loss of insulation resistance and dielectric strength can occur. Destructive arcing between the wire and sheath can occur if the wet cable is energized. Unsealed cable can be dried by a 24 hour oven bakeout at 250°F or higher or by self-heating at low voltage.

In general, there is very little temperature difference between the sheath and wires. With the cable sheath operating at temperatures less than 1000° F, ARi recommends not exceeding 150 watts/in (area measured at the sheath surface), when ends are properly terminated.

As temperature increases above 1000°F, the maximum watt density should be decreased.

Heater life in any specific application is difficult to predict. However, life generally decreases as temperature and/or the number of thermal cycles increases.

Maximum recommended operating temperature is 1800°F.

	SPECIFICATIONS
Sheath:	Inconel* 600
Insulation:	Magnesia, compacted. Minimum content of MgO is 99.4%
Wire:	Nickel-Chrome-Iron with resistivity of 620 OHMS/CMF @20°C (68°F)
Tolerances:	Sheath Diameter — \pm 0.005 inches (\pm 0.13mm) Continuity resistance — \pm 10% of nominal
Insulation Resistance:	1000 megohm — ft. @ 500 VDC @ 20°C (68°F) 100 megohm — ft. @ 500 VDC @ 317°C (600°F)
Dielectric Strength:	100 volts/.001 inch of insulation thickness — Straight cable 50 volts/.001 inch of insulation thickness — 5D radius bend. Cable ends must be coated to prevent arcing
	*Registered Trademark of International Nickel Corp.

HOW TO ORDER: 1. Specify "Part Number" and total quantity.

- 2. Best pricing is to accept material in random lengths. Random lengths will be 40 ft. or longer except 10% or less of the total quantity ordered can be as short as 15 feet.
- 3. All items shown are normally stocked.

See Bulletin 5.2 for finished heaters made from AerObiax electric heater cable.

ARi Industries Inc

381 ARi COURT, ADDISON, IL 60101, USA Phone: (630) 953-9100 Telefax: (630) 953-0590 CALL TOLL FREE 1-800-237-6725 1-800-AEROPAK

IN THE UK: CONTACT ARI INDUSTRIES, (UK) LTD., Unit 2F, Albany Park, Frimley Road, Camberley, Surrey GU15 2PL England Phone: 0276-69-2500. Fax: 0276-69-2110

FLEXIBLE HIGH WATT DENSITY ELECTRIC HEATERS

NO OTHER ELECTRIC HEATER CAN CLAIM THE SIMULTANEOUS ADVANTAGES:

- FLEXIBILITY. The element can be readily bent by hand or production machinery to a desired configuration and it can retain that configuration after repetitive heating and cooling cycles. This feature permits placing the heater where the heat is required and thus eliminating hot spots.
- HIGH WATT DENSITY. By choice of materials it is possible to obtain 150 watts per square inch of surface area without loss of other performance characteristics.
- FAST TIME RESPONSE. By elimination of unnecessary volume, the weight and therefore heating time is greatly reduced.
- CORROSION RESISTANCE. By choice of Inconel 600* sheath material, the heater can be immersed in many corrosive fluids without deterioration.
- LONG LIFE. By new and patented methods of lead wire attachment, we eliminated the source of 70% of electric heater failures. We've used these types of heaters in aircraft applications and warranted 8000 hours of flight time (notice this isn't energized time) which means that the total "on" time would exceed 20,000 hours. Industrial applications probably do not have as long a useful life since the environment is varied and often more severe.
- NUCLEAR APPLICATION. By choice of materials, these heaters can withstand long time exposures in the core of a power nuclear reactor with negligible deterioration.

*Reg. T.M. International Nickel Corp.

AEROROD[®] BXD HEATERS

TABLE 1

HEATED DIAMETER D1 INCHES	POWER AT 115 VOLTS WATTS	POWER DENSITY AT 115 VOLTS WATTS/IN ²	POWER AT 230 VOLTS WATTS	POWER DENSITY 230VOLTS WATTS/IN ²	HEATED LENGTH L INCHES	PART NUMBER
0.040	75	8			71	BXD-04B-71-K
	100	15			53	BXD-04B-53-K
	150	34		2 <u>- 2</u>	35	BXD-04B-35-K
0.062	200	17	-	—	61	BXD-06B-61-K
	300	38			41	BXD-06B-41-T
	400	66			31	BXD-06B-31-T
0.093	300	12	1200	46	88	BXD-09B-88-T
	500	32			53	BXD-09B-53-T
	700	63	- 1 - <u></u>		38	BXD-09B-38-T
0.125	600	18	2400	73	83	BXD-13B-83-T
	800	33	-		62	BXD-13B-62-T
	1000	51			50	BXD-13B-50-T
0.188	900	12	3600	48	126	BXD-19B-126-T
	1200	22	·		94	BXD-19B-94-T
	1500	33		2° <u>-</u> 2	76	BXD-19B-76-T

The above heaters are normally in stock. Please consult factory for wattages not listed or other special requirements you may have.

NOTES: (Apply To Table 1)

- 1. For power at other voltages, multiply power at 115 volts by (new voltage/115)². Tolerance on wattages is \pm 10%.
- 2. Tolerance on diameter D1 is ± 0.005 inches.
- 3. Tolerance on length (L) is ±5%.
- 4. Sheath material is Inconel 600.
- 5. Wire material is nickel-chrome iron with resistivity of 620 ohms cmf at 68°F. (20°C.)
- 6. These heaters can be coiled or formed to meet your requirements. Please consult factory with your requirements.

AEROROD® BXX HEATERS

TABLE 2

HEATED DIAMETER D1 INCHES	POWER AT 115 VOLTS WATTS	POWER DENSITY AT 115 VOLTS WATTS/IN ²	POWER AT 230 VOLTS WATTS	POWER DENSITY 230VOLTS WATTS/IN ²	HEATED LENGTH L1 INCHES	COLD LENGTH L2 INCHES	PART NUMBER
0.040	115	20			46	4	BXX-04B-46-4K
0.062	300	38	-	—	41	4	BXX-06B-41-4K
	400	66	2		31	4	BXX-06B-31-4T
	500	107	_		24	4	BXX-06B-24-4T
0.093	300	12	1200	47	88	4	BXX-09B-88-4T
	500	32	2000	129	53	4	BXX-09B-53-4T
	700	63	_	_	38	4	BXX-09B-38-4T
	900	106	_		29	4	BXX-09B-29-4T
0.125	600	18	2400	74	83	4	BXX-13B-83-4T
	800	33	-	_	62	4	BXX-13B-62-4T
	1000	51		*1	50	4	BXX-13B-50-4T
	1500	116	—	_	33	4	BXX-13B-33-4T
0.188	1200	22	4800	86	94	5	BXX-19B-94-5T
	1500	33	_	_	76	5	BXX-19B-76-5T
	2000	59	111		57	5	BXX-19B-57-5T
	2500	94	0-0		45	5	BXX-19B-45-5T
0.250	1800	18	7200	73	126	5	BXX-25B-126-5T
here and the	2000	23	_	-	113	5	BXX-25B-113-5T
	2500	35	:	_	91	5	BXX-25B- 91-5T
_	3500	69	_	—	65	5	BXX-25B- 65-5T

The above heaters are normally in stock. Please consult factory for wattages not listed or other special requirements you may have.

NOTES: (Apply To Table 2 and 3)

- 1. For power at other voltages, multiply power at 115 volts by (new voltage/115)². Tolerance on wattages is \pm 10%.
- 2. Tolerance on diameter D_1 is ± 0.005 inches.
- 3. Tolerance on heated length (L1) is ±5%,
- 4. Tolerance on cold length L_2 is ± 1.0 inch.
- 5. Sheath material is Inconel 600.
- 6. Wire material is nickel-chrome iron with resistivity of 620 ohms cmf at 68°F. (20°C.)
- 7. These heaters can be coiled or formed to meet your special requirements. Please consult factory with your requirements.
- 8. The standard cold lead lengths are 4 or 5 inches, for our stock heaters.
- 9. Cold lead wire material is nickel internally spliced to the heater wires.

AEROROD[®] BXB HEATERS

TABLE 3

HEATED DIAMETER D1 INCHES	COLD LEAD DIAMETER D2 INCHES	POWER AT 115 VOLTS WATTS	POWER DENSITY AT 115 VOLTS WATTS/IN ²	POWER AT 230 VOLTS WATTS	POWER DENSITY 230VOLTS WATTS/IN ²	HEATED LENGTH L1 INCHES	COLD LENGTH L2 INCHES	PART NUMBER
0.188	0.375	1575	37	6000	141	72	5	BXB-19B-72-5T
0.188	.0375	3000	141	—	-	36	5	BXB-19B-36-5T

The above heaters are normally in stock. Please consult factory for wattages not listed or other special requirements you may have.

TERMINATION DETAILS

EXPLANATION OF PART NUMBER:

<u>BXX-06B-61-4K</u>

TERMINATION TYPE "K" OR "T"
 COLD LEAD LENGTH IN INCHES L₂
 HEATED LENGTH IN INCHES L₁
 SHEATH MATERIAL B = INCONEL 600

-SHEATH DIAMETER D1 (0.062") -HEATER STYLE (BXX) or (BXD, BXB)

Flexible Cartridge Heater made from ARi Heaters.

- · Fast Time response
- Inserted into rough-drilled hole or curved hole
- Good contact with walls of hole
- Flexible
- Easy to remove from blind hole does not seize
- Withstands shock & vibration

AerOpak® Thermocouples

AerOpak[®] assemblies incorporate thermocouple wires insulated in compacted MgO within a st/st sheath. Usable temp. range -400° to 2000°F. AerOpak[®] thermocouples can be furnished either as complete assemblies or replacement elements.

BULLETINS 1.0, 1.3, 1.4, 7.3

AerOpak® High Temperature Thermocouples

Designed for non-cooled applications in steel mills, nuclear reactors, petrochemical plants, aircraft, and process industries, these thermocouples are suitable for use at temperatures from 2000° to 4000°F.

BULLETINS 2.0, 2.2, 2.3

ARIDET®

Resistance Temperature Detector

 $\pm 0.1^{\circ}$ F accuracy with industrial ruggedness. Strain free platinum element with mineral insulation and stainless steel sheath for use in an application from -300°F to +1000°F.

BULLETINS 8.0, 8.4

ACCESSORIES

ARi Industries, Inc.

www.ariindustries.com

Phn: 800-237-6725

BVX AerOrod Heater

Features:

- Ultra low heat generated in cold sections.
- Electrical connections sealed inside of electrically isolated metal sheath.
- Variety of sizes and lengths possible for customers needs.
- Reduction in heat at cold end allows moisture seals to survive even in extreme process temperatures.
- Vacuum sealing "O" rings can survive when sealed against the BVX cold section. Previous cold sections could generate enough heat to melt silicone and viton seals.
- All welded construction to minimize any possible contamination to customers system.
- Available in stainless steel and Inconel 600 outer metal sheaths.
- BVX offered as direct replacement for traditional BXX series heater designs
- BVX heaters have been successfully used at temperatures approaching 1600°F on the heated section.

ARI Introduces BVX heaters for Improved cold end efficiency.

ARI's new BVX series AerOrod heater offers a vast improvement in heated cable to cold end efficiency. ARI's AerOrod heaters have always provided outstanding high temperature

electrical heating. Today's demands in semiconductors and aerospace have driven us to take a very successful product and built upon it's current features and improve them beyond where current heaters fail.

The new BVX series of AerOrod heaters allows the end user to focus the heat where the customer wants it. After the heated section a cold section that extends away from the heated section provides only a fraction of the heating that previous heaters generated.

Old to new comparison example:

Current BXX series heaters offer a 10 to 1 ratio on heating vs cold cable. 1 Ft of heated cable that generated 50 watts would generate 5 watts/Ft in 1 Ft of the cold section cable. The new BVX series heaters in the same application would generate only 0.5 to 1 watt of heat in 1 Ft of cold section. Values shown are nominal values and can very with standard tolerance ranges.

Customer applications benefit from the focused heat in the area where they want it without introducing heat into unwanted areas. Unwanted areas could be in the insulation barrier that surrounds the heated section, or even passing through a vacuum where heat is not wanted on the cold section

Power connections remain much cooler when using the improved cold sections. Previous high voltage cold sections generated excessive temperature to point where ceramic insulations were needed at the potting adapter to lead wire. Typical moisture seals at the ends of the cold cable can withstand 250°F (121°C), and 500°F (260°C).

Environmental seals when exiting vacuum chambers are not exposed to excessive temperature generated from the cold ends of the BVX series. Typical seal temperature ratings are:

Buna "O" ring seals are rated for 176°F. (80°C) Viton seals are rated for 356° F. (180°C) Silicone "O" ring seals are rated for 400°F. (200°C).

Radiant heat is the best form of heat transfer in a vacuum. Electric heaters need to be over 1000°F before metal surfaces start to radiate heat away from the surface of the heater. Keeping that heat in the area of the process and away from the cold section of cable brings a new generation of efficiency to vacuum process heating. (continued on back)

ARi Industries, Inc. 381 ARi Court Addison, IL 60101 Phone: 800-237-6725 Fax: 630-953-0590

www.ariindustries.com Email: sales@ariindustries.com Division of Okazaki Manufacturing Company

BVX AerOrod Heater

ARi Industries, Inc.

www.ariindustries.com

Phn: 800-237-6725

ARi's Product Overview

ARi is Manufacturer of mineral insulated heaters, thermocouples, RTD's, Metal-sheathed cable. Our designs/products are being used in semiconductor, FPD, and vacuum furnace applications. Our heaters are used for industrial process heating. Aerospace applications, and have reached Mars. All base metal thermocouple types available. Noble and refractory metal types sensors suitable for vacuum service up to 2200°C. Both standard and custom products available.

ARi is a ISO 9001-2000 registered company

(BVX Series Heaters continued)

Vacuum applications act like heat traps until those radiant temperatures are achieved. Sensing temperatures from metal heater surfaces in a vacuum can also be difficult.

ARI offers high temperature furnace brazing of sensors

to attach thermocouples directly to the metal sheath. Proper Sensor attachment allows the parts to remain in contact in a vacuum and not rely on radiant heat transfer. Having that sensing point for feedback to the control system allows excellent repeatability for process control and management.

The BVX Heaters can be made as direct replacements for the BXX series of cable heaters currently in use around the world. Custom shapes and custom bend formations can be developed for your application specific needs (see above photo).

BVX example are shown below:

ARI offers heaters from 0.0335 inch O.D. & larger. Custom sizes and lengths are available to meet your applications needs. Contact our sales/engineers for any questions, or pricing inquiries.

ARi Industries, Inc. 381 ARi Court Addison, IL 60101 Phone: 800-237-6725 Fax: 630-953-0590

www.ariindustries.com Email: sales@ariindustries.com Division of Okazaki Manufacturing Company

Available Products:

Temperature Sensors

- Mineral insulated cable
 - Base metal T/C cable:
 - Type E
 - Type J
 - Туре К
 - Туре Т
 - Nobel metal T/C cable:
 - Type B
 - Type R
 - Type S

 - Refractory T/C cable: Tungsten Rhenium

 - Type C
 - Type D
 - Multipoint T/C assemblies for temperature profiling.
 - Fan Junction for furnace tube temperature sensing: Stainless Steel Sheaths Hastelloy-X Sheaths
- Nuclear grade T/C's.
- **RTD** assemblies
- Thermowell's
- Temperature transmitters

Conductor Cable Assemblies

MGO insulated conductor cable. 1 to 10 wire designs

Neutron Detectors

Self Powered Neutron Detectors.

Electric Heaters

- Metal sheathed electric heater
 - cable:
 - Stocked sizes Single ended
 - Double ended
 - **Custom lengths**
 - Multiple circuits
 - Custom formations
 - Heated & unheated sections
 - Vacuum designs
 - High Temp. Heat Tracing
 - Furnace brazed parts
- Tubular heater assemblies.
- Flexible silicone rubber heaters.

Quality System

ISO-9001-2000 Certified.

Testing Options / Services offered

- Custom testing available: X-Ray Helium Leak Heat Treating Temperature calibration (traceable to NIST)
- **Custom Furnace Brazing**

ENGINEERING DATA FILE 3 APPLICATION GUIDE MINERAL INSULATED HEATERS

ARi is a registered U.S. Trademark

ARI

AerOrod®

R

EDF 3 APRIL 1999

AerOrod[®] Heaters

and Heater Cable are manufactured with highly compacted MgO insulation in a multiple reduction process that yields a uniform cross-section and minimum wire to sheath spacing for efficient heat transfer. This material can be easily formed, clamped or brazed in place to give maximum power levels in difficult situations.

Typical cross sections:

This application guide has been prepared to simplify the selection of heaters for most industrial applications. Materials data and selection curves are given to allow use of common sense and simple mathematics to solve otherwise exotic heat transfer problems.

EDF-3 Definitions

Aerobiax — Two wire M.I. heater cable

Aerocoax - Single concentric wire in M.I. cable

Area — For round sheath surface area or wire area in square inches. $A=3.1415 \text{ DL} (inch)^2$ with diameter and length in inches.

BTU (British Thermal Unit). Defined as the amount of heat (Q) needed to raise the temperature of 1 pound of pure water 1°F. 1 BTU=.2928 watt-hours. 1 BTU/MIN=17.57 watts=.252 Kg CAL/MIN.

Cold End BXX style heater. M.I. cable with an internal welded transition between 620 Ω /CMF inconel 600 heater wire and 60 Ω CMF nickel wire used to thermally isolate heated section from temperature sensitive termination.

Convection Heat Loss

(Qc) (BTU/HR/FT²),Qc=0.296 (T_s-T_a)1.25 $\sqrt{\frac{V+68.9}{68.9}}$

Where: Ts=Surface Temp in °F Ta=Air Temp in °F

V=Wind velocity in ft/min (1 mph = 88 ft/min)

Density Weight of a unit volume of material, pounds per cubic foot.

Heat Tracing The addition of heat to process piping systems to compensate for heat losses or to maintain liquids above solidification or freezing temperatures. Additional heat obtained with steam, electrical heaters or direct skin effect electrical heating of metal piping.

Line Voltage 115 or 230 V, 60 Hz, single phase.

M.I. Mineral Insulation Usually refers to compacted magnesium oxide (MgO) powder used as internal insulation.

Ohms Law E(volts) = I (amps) X R(ohms)

O.D. Outer or external diameter of heater or thermocouple with circular cross-section

Power Electrical energy dissipation ^P watts= (Evolts) (lamps)

 $= \frac{(Evolts)^2}{(Rohms)}$ $= (Iamps)^2 (Rohms)$

Note: Assumes power factor of 1.0 for a resistive load at 60 Hz.

Resistivity Resistance to current flow for a given material at a specified temperature. For wires it is expressed as ohms per circular mil foot 1 mil = 0.001'' (.010'' = 10 mils)

Sheath Continuous outer metal jacket of M.I. cable

Specific Heat Amount of thermal energy required to raise the temperature of one pound of a material by 1 °F as compared to water (specific heat of water = 1 BTU/pound/°F)

Temperature Coefficient of Resistivity Relationship of change in resistance or resistivity to temperature change. Expressed as ohms per ohm per °C or °F.

Termination An enlarged transition area for AeroRod[®] heaters between M.I. cable and flexible insulated lead wires. Termination is usually filled with epoxy or ceramic compound.

Thermal Conductivity Heat transfer value for a material within a specified temperature range. Expressed in BTU/hour, °F, Ft²/Ft.

Watt Density Power dissipation per unit area. Expressed as watts per square inch of sheath surface area. (power density) related to surface temperature.

Index		
Definitions	Page	1
Heater Power Level Determination	Page	2
Heater Selection	Page	5
Heater Application	Page	7
Selection & Application of Temperature Sensors	Page	9
Stantrol® 2-Wire Systems	Page	10
Heat Tracing	Page	11

Heater Power Determination:

The majority of heating situations require highest power during the warm-up period where a given mass must be brought from ambient to an elevated temperature within a given time. The total power required is influenced by the type and size of material involved. Time period, and the method of thermally coupling heater to heated surface. Determination of warm-up power requirements and the use a time proportioning controller will insure adequate initial power with maximum heater life under operating conditions. Warm-up power calculations include a 20% power addition to allow for heat losses in static systems.

This general rule may not be valid if flowing metals, liquids, or high velocity gases are involved. Calculation of operating power loss should be added for these situations to avoid the need for expensive booster heaters and unnecessarily complex control systems.

1. Determine weight of material to be heated and desired temperature rise. Obtain power requirement from Table 1. Multiply weight X specific power requirement X temp rise in °F to obtain power for a 60 minute heat up period.

Approximate power required to heat materials from ambient to an elevated temperature within one hour heating period. The specific power values include a 20% factor for distributed heat losses.

Formula: Weight (lbs.) X Specific Heat X Temp Rise (°F) = Watts/Lb/°F (Specific power requirements for 1 hour heat up) 3.412 (1 Watt = 3.412 BTU/HR)

5

2. Determine operating heat losses from appropriate formula or curve from following pages.

Desired heater power level will then be the highest of these two.

Examples:

- 10 lbs. of copper to be heated from 70°F to 350°F in one hour: 10 lbs. X .035 W/LB/°F X 280°F = 98 watts. To decrease heating period from 60 minutes to 5 minutes: 60 X 98W = 1176 Watts
- 2. 5 lb. steel container with 8 lbs of water to be heated from 40°F to 200°F in 10 min.:

Watts (Steel) = 5 lbs. X .042 W/LB/°F X 160°F = 33.6 Watts (Water) = 8 lbs. X .352 W/LB/°F X 160°F = 450.6 Total: 484.2 Watts

To decrease heating period from 60 to 10 minutes: 60 X 484.2 Watts = 2905.2 Watts

10

Operating Heat Losses

- 1. Conduction losses to adjacent materials. Use Table 1 power requirements for the materials involved, assuming a temperature rise plus external surface losses as follows:
- 2. Surface losses, convection and radiation:

Table 1

	Material	Specific Power Requirement Watts/Lb/°F	Specific Heat BTU/Lb/°F	Density Lbs/Ft ³	Thermal Conductivity (K) BTU/Hr °F Ft²/Ft	Maximum Power Density Watts/In ²
S O L I D S	Aluminum Antimony Brass Copper Epoxy Glass Iron, Cast Iron, Wrought Lead Nickel Nylon Paper Paraffin Plastic, Ave Rubber Silver Stainless Steel Steel Teflon Tin Zioc	0.082 .0176 .035 .035 .156 .070 .046 .042 .011 .039 .176 .108 .245 .13 .14 .021 .042 .042 .042 .042 .042 .042 .042 .035	23 .05 .10 .10 .45 .20 .13 .12 .03 .11 .50 .45 .70 .37 .40 .06 .12 .12 .25 .06 10	160 423 525 550 165 450 450 710 550 710 550 58 95 655 485 490 455 455	117 14 130 224 .80 .70 28 35 20 36 .15 .60 56 .15 .15 13 242 9 39 .15 37 65	
L I Q U I D S	Acetic Acid Alcohol Asphalt Benzine Ether Freon Gasoline Glycerine Kerosene Lead Mercury Oil, Hydraulic Petroleum Tin Water	.165 .228 .14 .165 .176 .084 .176 .204 .176 .204 .176 .014 .011 .14 .178 .021 .352	.47 .65 .40 .45 .50 .24 .50 .58 .50 .04 .04 .04 .40 .51 .060 1.0	66 55 65 56 46 81 46 79 51 710 845 58 58 56 460 62.4	 .11 .05 .09 4.8 37 .343	40 10 3 3 40 3 35 20 20 18 20 55
G A S E S	Air Ammonia Carbon Dioxide Carbon Monoxide Chlorine Helium Hydrogen Methane Nitrogen Oxygen	0.123 .183 .070 .084 .046 .44 1.20 .21 .088 .072	.35 .52 .20 .24 .13 1.25 3.41 .60 .25 .22	.075 .05 .12 .08 .20 .01 .005 .05 .08 .09	.025 .08 .10 .014 .014	

Do not exceed recommended power density values when heating liquids unless local boiling or breakdown can be tolerated. Check Figure 3 to be sure.

FIGURE 3

AerOrod® Heater Surface Temperature vs Watt Density in 70° F Still Air

FIGURE 3A EXPANDED FIG. 3 CURVE

From 70°F to 600°F 0 to 12 watts/in²

Heater Selection Methods

Gi	ven:	Selection Approach:					
Α.	Surface Temperature Any Voltage	 Obtain power density from Figure 3 or 3A in watts/in². Select heater from Bulletin 5.2 options using power density column in Bulletin 5.2. 					
в.	Power At 115V 50/60 Hz Line Voltage	 Check Bulletin 5.2 for options using 115V column. If Bulletin 5.2 stock heater cannot be used, determine heater length vs. heater O.D. from the following calculation: 					
		.040" O.D. <u>5290</u> = length in inches .125" O.D. <u>49532</u> = length in inches Power					
		.062" O.D. <u>12245</u> = length in inches .188" O.D. <u>113034</u> = length in inches Power					
	1.1.1	.093" O.D. <u>26450</u> = length in inches .250" O.D. <u>228017</u> = length in inches Power					
		 Derive part number per Bulletin 5.2. Determine total surface area from column 4 of table 2. Use this area to determine power density (<u>Total Power</u>)= W/IN² and surface temperature from Figure 3 or 3A. (Total Heated Area) 					
C.	Heated Length At 115V 50/60 Hz	Check Bulletin 5.2 for length vs. heater sheath O.D. and power options. If desired heated length is not listed in Bulletin 5.2, use the constant from Step B.2 above to obtain power vs. sheath O.D. options. <u>Constant</u> = Power at 115V heated length					
		Determine total surface area from column 4 of Table 2. Determine power density (Total Power) and then surface temperature from Figure 3 or 3A. (Total Heated Area)					
D.	Voltage and Power	1. Determine Heater Resistance R(ohms) = $\frac{(voltage)^2}{Power}$					
	Than 115V	 Determine heater length options using column 3, Table 2 resistance per inch. <u>Heater Resistance</u> = heater length in inches ohms per inch 					
		3. Derive part number per Bulletin 5.2.					
E.	Power and Heated Length at a Voltage Other Than 115V	 Determine total resistance for O.D. options from column 3 of Table 2 (heated length) X (ohms/inch) = heater resistance. Determine voltage using power and resistance. Voltage= √(power) x (resistance) Determine heater area using column 4 from Table 2 (heated length) x (in²/in) = area. Determine power density total power = W/IN² power density total area Determine heater surface temperature from Figure 3 or 3A. 					

Caution: Do not exceed the maximum applied voltage or current limits of Table 2 or watt density limitation on terminations per Table 5.

Table 2

Heater Style	Sheath O.D. ±.005″	Ohms Per Inch Of Heated Length	Surface Area Per Inch of Heated Length (in) ²	Max Applied Voltage	Max Current (Amps)	Max Hi Pot Voltage (VAC) at 60 Hz
1	2	3	4	5	6	7
BXD-04 BXX-04	0045"	2.5	.141	120	2	250
BXD-05 BXX-06	0.063"	1.08	.196	120	4	350
BXD-09 BXX-09	0.093"	0.50	.292	230	7	500
BXD-13 BXX-13	0.125"	0.267	.393	240	9	750
BXB-19 BXD-19 BXX-19	0.188″	0.117	.591	- 350	17	1100
BXX-25	0.250"	0.058	.785	450	23	1500

TERMINATION DETAILS

ARiCoil[™] Cartridge Heater Design Procedure

ARiCoil[™] Cartridge Heater

Straight AerOrod heaters formed into a coil form for insertion into tubes or blind holes. Can be used inside formed tubes or blind holes with drilling offset where traditional cartridge heaters cannot be used.

Required Data: 1) Power and applied voltage 2) Coil O.D. and coil length

Note: If power in watts is not known, refer to the heater selection methods. Power density (watts/in²) must be derived using effective surface area, if coiling pitch is equal to the sheath diameter up to twice sheath diameter.

 $A = \pi$ (Coil I.D + Coil O.D.) Coil Length

Table 4Heater Coil Inner Diameter vs.Ohms Per Inch of Tightly Wound Heaters

Coil		Heater Sheath O.D.						
I.D.	.040	.062	.090	.125	.188	.250		
.180"	35.2Ω							
.188″	37.00		. 0	Coil I.D. is	too sma	JF		
.250"	49.0Ω	13.5 Ω for heater sheath O.D. in						
.313"	61.2Ω	16.9Ω	16.9Ω this range.					
.375"	73.5Ω	20.3Ω	6.5Ω					
.437"	85.7Ω	23.60	7.5Ω					
.500"	98.011	27.0Ω	8.6Ω	3.3Ω				
.562"	110.2Ω	30.3Ω	9.6Ω	3.7Ω				
.625"	122.5Ω	33.8Ω	10.7Ω	4.1Ω				
.750"	147.20	40.7Ω	13.0Ω	4.9Ω	1.4Ω			
.812"	159.2Ω	44.0Ω	14.0Ω	5.4Ω	1.5Ω			
.875"	171.7Ω	47.5Ω	15.1Ω	5.80	1.6Ω			
1.000"	196.2Ω	54.0Ω	17.2Ω	6.6Ω	1.8Ω	0.72Ω		

If preformed on an undersized mandrel, assume a total coil I.D. spring back equal to heater sheath diameter. To determine power dissipation

> Power (watts) $= (voltage)^2$ total resistance Power at 115V P = $\frac{13225}{ohms}$ Power at 230V* P = $\frac{52900}{ohms}$

*For 0.090" sheath diameter and larger heaters.

Procedure

Given power in watts, voltage, coil dimensions

Determine total resistance in ohms R = (voltage)²

power

- 2. Refer to Table 4. Multiply coil length in inches by resistance per coil inch to obtain total resistance.
- 3. Compare resistances from steps 1 and 2 to obtain best match.
- Note: Tightly wound coils can be opened up to a spacing of 3 times sheath diameter between turns.

Flat (archimedes) spiralled heaters

A flat pancake shaped coil is one of the most efficient methods of heating flat surfaces. Any of the AerOrod® heaters in the BXB, BXD, or BXX configurations can be used to form spiral heaters when the straight length is known. Considerations of applied voltage, power and power density (temperature) apply as derived in previous sections. For close wound (touching turns) spiral coils, the following table can be used if outer coil diameter is known and the innermost coil diameter is 4 times heater sheath O.D.

Straight heater length (in inches) = (constant) (coil diameter)2

Sheath O.D.	Constant
.040"	19.63
.062"	12.66
.090″	8.72
.125″	6.28
.188″	4.18
.250"	3.14

For flat coils with a uniform space between turns, the center to center space between adjacent turns is defined as the pitch, used in the following formula

Length (inches) = $\frac{.785 \text{ (coil diameter)}^2}{\text{Pitch (in inches)}}$

General Application of AerOrod® Heaters

The following section is specifically aligned towards the successful application of AerOrod® Heaters.

AerOrod[®] heaters consist of one or more resistance wires completely embedded in compacted magnesium oxide (MgO) and enclosed in a continuous Inconel 600 sheath. Material is tubular in nature with wire or wires straight and uniformly spaced within the sheath. Note: AerOrod[®] differs from electric stove type heating elements. Stove elements normally contain an internal helical coil of resistance wire. The use of the following approaches on heaters of the cartridge, blanket, or internal helix wire types are not recommended without a careful comparison of characteristics.

Maximum Temperatures:

Inconel 600 sheath: 2000° F 1500° F sulphurous Magnesium Oxide: 3000° F Heater Wires: 1800° F

Forming Limitations

Heater O.D. (Heated Section)	Minimum Bend Radius	
.045	.09"	
.062	.125"	
. 125	.250"	
.250	.500"	
.313	.625"	

Note: Capacitance discharge welding to sheath is not recommended. Any breach in the sheath can cause a rapid drop in insulation resistance that will result in heater failure.

Brazing: Use minimum clearance between heater sheath and adjacent material. Restrain ends of heater.

Torch Brazing:

For 1000°F max. service: Handy & Harmon Easy Flo. 1160°F melt.

For 1200°F max. service: Eutectic Eutecrod 1400 or Equal — 1425°F melt

TABLE 5 Watt Density Limitations on Terminations

		1					
Heater	Term						
Style	Type	.040	.062	.093	.125	.188	.250
BXD	к	30	25	20	15	10	10
	Т	100	100	100	75	50	40
вхх	к	80	65	55	40	25	25
	т	150	150	150	140	100	100
вхв	к	150	130	110	80	50	40
	т	150	150	150	150	150	140
		1000000	N 16 2 31	10100	10.202		

Welding:

Sheath may be heliarc welded, if done carefully. Current limited DC systems and the following weld geometries are recommended.

Note: Heater should be mechanically clamped or heliarc tack welded to brazing surface to avoid separation during a furnace brazing cycle.

Application of Heater

After the heater power level has been determined per the preceeding section, follow-up action is required to insure correct application. In general, insuring good thermal contact throughout the desired temperature range will yield both the highest efficiency and closest temperature control. Mechanical methods using a clamping force or straps will usually suffice for operating temperatures below 500° F or heater watt densities below 10 watts per square inch. Above either 10 watts/in. or 500° F surface oxidation on metals or heater sheath itself will add an insulating barrier. The lower thermal conductivity of such oxides will create an appreciable temperature drop between heater and heated surface, requiring additional power to maintain a given surface temperature and adding a controller setting error. In all cases, this temperature drop will shorten heater life and increase the deviation from set point. A 600° F \pm 3° F system can be degraded to 600° F \pm 20° F by adding an oxide coating between heater and heated metal surface. The following recommendations are based on experience in applying AerOrod heaters to obtain maximum efficiency and life. (Maximum efficiency defined as the minimum power needed to attain and accurately hold a specified temperature)

Temperatures Below 500° F, Metal Surfaces:


```
Flowing liquids or air
```

FLOW

4. Radiant, 1000° F

Open grid pattern normally required. Form to fit desired heating pattern with a minimum of insulating or low conductivity supports to maintain shape. With AerOrod heaters, wire or strap of stainless steel may be used. Strap or wire thickness should be no more than 10% of heated section O.D.

Spacing Between Adjacent Coils should be Equal

Temperature Sensors

General: Both the location and mass of temperature sensors will affect control system performance. Best response to process changes is normally obtained by locating sensor adjacent to heat source. Location effects during process temperature change:

The mass or size of the sensor determines time response to process changes. If the sensor mass differs from the heater mass, the time response difference will cause excessive control system hunting, increasing temperature swings. It is possible to add anticipatory circuits to overcome this error, better to eliminate the need for compensation by selecting components that are compatible to each other and to the process.

Sensor Response

Heater-Sensor or Heater-Load mismatch and location problems may be overcome by adding system variables to the controller such as: variable proportional band, manual or automatic reset and rate. A more reliable and economical system can normally be obtained thru careful selection and matching of sensor and controller to the load. This approach will also result in the lowest possible power demand. Stan-Trol series 300 control system employs the unique approach of combining heater and sensor within one sheath, completely eliminating the possibility of sensor dislocation or time response mismatch.

SENSOR ATTACHMENT & MOUNTING

Temperature sensors must accurately generate a signal that is related to the media to be controlled. Therefore, immersion in gases and liquids or attachment to solids must result in minimum random errors caused by the method of installation. The following methods are recommended to decrease installation or application error that will cause control temperature errors or excessive temperature variations.

THERMOCOUPLE, METAL SHEATHED TYPE (M.I.)

Thermocouples are always tip sensitive sensors, but can be affected by stem conduction. If insufficient sheath length is at process temperature.

CONTROLLER SELECTION, MATCHED SYSTEMS

The following selection criteria is based on the philosophy of matching heater and sensor to the application, and matching a temperature controller to the selected heater and sensor. This approach will usually result in the most efficient system that will yield lowest cost as based on the initial purchase price and operating costs per hour.

A. TWO-WIRE CONTROLLERS.

Where sensor installation or long term sensor reliability are problem areas, the combined sensor/heater approach to temperature control is recommended. The model 300 controllers are unique in that the special heater is manufactured with a positive temperature coefficient wire to combine the functions of both heat source and resistance thermometer. When combined with the appropriate controller, the heater resistance is sensed by an input bridge circuit. Power demand then becomes a function of the difference in resistance between set point potentiometer and actual heater/sensor resistance. This approach yields a minimum component control systems that allows system accuracies to \pm 1°F with fail-safe features. The positive temperature coefficient wire that is used will limit the power to approximately 50% of that at room temperature in the event that full power is applied continuously — acting as a power proportioning device to avoid the runaway that is possible with previous industrial heater systems. In addition, the heater/sensor employs an averaging effect as the entire heater is also an RTD. Therefore, the controlled temperature will represent the average temperature along the length of the heater forming.

POWER LEVEL: INPUT VOLTAGE: HEATER-SENSOR MATCHING: HEATER-SENSOR APPLICATION: Determined from initial section of this guide. 110 VAC line, limited to 1000 watts per circuit. Not required. Heater and sensor are the same unit. "Prior art" control approaches requiring oversize heaters with large thermal masses added to the two-wire controller system will decrease system accuracy. Highest efficiency and accuracy can be obtained with minimum thermal mass between heater and process as the control system will automatically compensate for changes in heat demand. Minimum mass insures fastest heater sensing and response to such changes in demand.

USA

DATE: November 2001 NO. H-90-1

THIN FILM DEPOSITION REESEARCH

Physics Departments in Universities throughout the world are experimenting on Thin Film Deposition using 900 to 1000°C (1652 to 1832°F) heated substrates.

The requirements are a physically small radiation or conduction type of heater for use under high vacuum conditions as a source for localized heating of a very small surface area (of the order of a few cm²). The heater has to be capable of raising the temperature of the crystal substrates to approximately 900°C to completely clean the substrate. The substrate temperature is then lowered for the deposition process.

Experimenters typically choose heater cable (from Bulletin 5.1)

1HN040B-16.3	2HN040B-30
1HN063B-6.5	2HN063B-13
1HN063B-1.6	

or completed heaters such as

BXX06B24-4T or BXX09B29-4T (from Bulletin 5.2)

and finally "made to order"

BXX06B24-11T or BXX09B29-11T

All of these are usually coiled to a flat Archimedes spiral of 2 to 3" overall diameter (EDF-3, page 7)

In a hard vacuum, the lower power dissipation in heater cold ends is still enough to overheat "T" style terminations, leading to the 11" cold end requirement and added cold end heat sinks in some cases.

Phone: 630-953-9100 Toll Free: 1-800-237-6725 Fax: 630-953-0590 E-Mail:sales@ariindustries.com Web Site: http://www.ariindustries.com

THERMOCOUPLE/RTD ACCESSORIES

CONNECTORS CONNECTION HEADS COMPRESSION FITTINGS THERMOCOUPLE LEAD WIRE

OCT. 98

CONNECTION HEADS

MINIATURE SIZE

Part No. 31146

With fixed 3 pole terminal block Style D, 1/8" process, 1/4" exit threads.

Part No. 31147

With fixed 2 pole terminal block Style D, 1/8" process, 1/4" exit threads.

TERMINAL BLOCKS

Fixed ceramic block with plated brass terminals. Supplied with two mounting screws. Used with connection heads 47003, 47053, 47052 and 47021.

Style B

Spring loaded feature added to Style A fixed terminal block. Supplied with two mounting screws. Sheath diameter 0.250". Used with connection heads 47003, 47053, 47052 and 47021.

Consists of: Spring, Bracket & Screws Part No. 24149 (Style A Blocks to be ordered separately)

Din Type Spring Loaded ceramic block. Approx. 0.375" spring travel. Stainless steel plate drilled to accept 0.250" O.D. Sheath Size. Used with connection heads 47003, 47053, 47052, 47021 and 47056. wire

Style D

Fixed ceramic block with plated brass terminals. Used only with miniature connection heads 31146 and 31147. Not sold separately.

2 Pole For 31147 Head

3 Pole For 31146 Head

CONNECTORS SPECIFY PART NUMBER AND QUANTITY

ARi Type B Two Pin Quick Disconnect Thermocouple Connector System

800°F TEMPERATURE RATING

Calibration

Symbol

J

R, S (2)

AEX⁽¹⁾

STANDARD SIZE

Thermocouple Connectors

Supplied in both 400°F and 800°F temperature rating.

UG (male)

PLUG - MALE

Part

Number

13151

13130

13152

13153

Color code - None. All are red.

Compensating materials for W5Re/W26Re
 Copper/copper Non-compensating
 Use 800°F Temp. Sheath Adaptor

400°F TEMPERATURE RATING				
PLU	G — MALE	JACK—FEMALE		
Part Number	Calibration Symbol	Body Color	Part Number	
13118	E	Violet	14118	
13101	J, Y	Black	14101	
13100	K	Yellow	14100	
13105	R, S	Green	14104	
13104	Т	Blue	14105	
13146	AEX (1)(3)	Brown	14138	
13112	B, AO ⁽²⁾	White	14109	
13156	N ⁽³⁾	Orange	14148	

Chest		antoro
Sneat	n Au	aptors

For 400°F Temp. rating connectors

Part Number	Tube or Sheath O.D.	
12133	.040"	
12104	.062"	
12103	.125"	
12102	.188"	
12101	.250"	
12100	.313"	

Sheath Adaptors

For 800°F Temp.rating connectors

Ъл	Part Number	Tube or Sheath O.D.	
	12148	.040"	
	12141	.062"	
	12142	.125"	
	12149	.188"	- 1
	12150	.250"	(
	12151	.313"	

Cable Clamp Part No. 20109

JACK-FEMALE

Part

Number

14143

14144

14145

14146

Miniature Blade Type

Thermocouple Connectors 400°F max. temperature exposure.

	19 fr
- 028	
	A D
	JACK (female)

PLUG	(MALE)		PLUG (FEMALE)
Part Number	Calibration Symbol	Body Color	Part Number	Calibration Symbol
13142	J	Black	14134	J
13143	ĸ	Yellow	14135	к
13144	R, S	Green	14136	R, S
13147	Т	Blue	14139	Т
13145	Copper/	White	14137	Copper/
	Copper			copper

Optional Crimp-on Sheath Adaptors for Mini Plugs

Crimp

Part Number	To Fit Sheath O.D.			
12136	0.040"			
12137	0.062"			
12139	0.125"			

ARi Type F High Temp (1000°F) ARi Patent 2,994,733

Wire to Wire Connector. Ceramic block with captive screw terminals, nickel plated brass.

STAINLESS STEEL POTTING SHELLS

Part Number	Shell O.D. (D)	Sheath Clearance Hole (d)	Bore (C)		
10106	.250"	.025"	.209"		
10107	.250"	.040"	.209"		
10108	.250"	.062"	.209"		
10109	.250"	.125"	.209"		
10110	.250"	.188"	.194"		
10111	.313"	.250"	.256"		

4 Pole

STAINLESS STEEL STRAIN RELIEFS (fully bright annealed)

U.S. Patent 3,144,507

Part No. 490571

Part No. 490960

1/8" wide tang welded or brazed to sheath ARi Patent 3,144,507

ARi Type A RTD 4 Pin Keyed Connector

Compression Fittings

Specify Part Number and Quantity

MATERIALS: <u>APNI</u> = Nickel Plated Brass <u>CS</u> = Steel <u>SS</u> = Stainless Steel

Reducing Bushings

Female NPT Thread

A Male NPT Th

Bore in Thread Inches (NPT)		Part Number	*Teflon Ferrules Part Number
.062	1/8	PTM-B2SS	
.125	1/8	PTM-D2APNI	47016
.125	1/8	PTM-D2SS	
.188	1/8	PTM-E2APNI	47017
.188	1/8	PTM-E2SS	
.250	1/8	PTM-F2APNI	47018
.250	1/8	PTM-F2SS	
.250	1/4	PTM-F4SS	
.313	1/4	PTM-G4SS	
.375	1/2	PTM-18 <u>SS</u>	
.500	1/2	PTM-K8SS	
.625	1/2	PTM-P8CS	
.750	3/4	PTM-Q12CS	
1.0	1	PTM-S16SS	
1.0	1	PTM-S16CS	

Male Thread	Female Thread	Part Materials		
1/2	1/8	33128	Nickel Plated Brass	
1/2	1/4	33127	Nickel Plated Brass	
3/4	1/8	33139	Nickel Plated Brass	
3/4	1/2	33157*	Nickel Plated Brass	
1/2	1/8	33155	Stainless Steel	
1/2	1/4	33141	Stainless Steel	
3/4	1/8	33150	Stainless Steel	
3/4	1/4	33154	Stainless Steel	

*Flush bushing. Does not have hex head as shown.

*Accessory Single Piece Teflon Ferrules to Fit Nickel Plated Brass Compression Fittings.

Sheath Stripping Tools

Aluminum Body	Nomir	nal O.D.	Tool Bits	
Part Number	Inches	mm	Part Number	
ST025A ST032A	.025 .032	0.64 0.82	TB125 TB125	Age of the second se
ST040 ST062 — ST079 ST090	.040 .062 .065 .079 .090	1.00 1.57 1.65 2.00 2.28	TB188 TB188 TB188 TB188 TB188 TB188	
ST118 ST125	.118 .125	3.00 3.18	TB250 TB250	
ST125B — ST187B ST236B ST250B	.125 .177 .187 .236 .250	3.18 4.50 4.75 6.00 6.35	TB250 TB250 TB250 TB250 TB250 TB250	

Power Adaptor *Supplied upon request only.

Special Threaded Adaptors

Part No. 47012 1/2" NPT x 1/2" NPT 304 st/st Fitting with weld lip for 0.250" O.D. sensors

Part No. 47013 1/2" NPT x 1/2" NPT 304 st/st Spring Loaded Fitting for 0.250" O.D. sensors spring travel 0.75" min.

Thermocouple Lead Wire

Thermocouple grade lead wire, solid conductors. All meet initial limits of error per ASTM E-230.

Calibration Symbol	Part Number	Calibration Symbol	Part Number
E	012EGG20 012EGG20SS	Ν	012NGG20 012NTT20
J 012JGG24 012JGG20 012JGG20SS 012KGG24 K 012KGG20 012KTT24 012KTT24 012KGG20SS	Т	012TGG20 012TGG20SS	
	R, S Type SX (CU/#11 Alloy)	012SXGG24 012SXGG20	
	012KGG20 012KTT24 012KGG20SS	ARi Type AEX (For W5Re/W26Re)	012AEXGG24 012AEXTT24 012AEXGG24SS

Part Number Code 01-2E-G/G-20-(SS) Calibration INSULATION { G/G = Glass/Glass T/T = Teflon/Teflon { G/G = Glass/Glass Calibration { G/G = Glass/Glass T/T = Teflon/Teflon { Code 01-2E-G/G-20-(SS) Calibration { Calibration 01-2E-G/G-20-(SS) Stainless steel braid over all Wire Gage Size 24 = 0.020" 20 = 0.032"

AerOseal®

Liquid absorption for creating a moisture free "Neutral Zone" in compacted MgO insulated material. U.S. Patent 3,032,444. Package in 32 fluid ounce containers.

PART NUMBER 61226-2—For surface shipments in U.S. only.

61226-3—For Air Freight shipments. (Special packaging requirements)

FEATURING:

- Large Range of Standard Thermowells
- Precision machined
- Competitively Priced
- Fast Delivery

SPECIFICATIONS:

STANDARD MATERIAL: SPECIAL MATERIAL: A.I.S.I. 304 and 316 ST/ST Brass (ASTM B-16), Carbon Steel (C-1018), Monel, Inconel 600, Hastelloy B, Hastelloy C, Nickel, others on special order.

DIMENSIONAL TOLERANCES:

Fraction ±0.03"

Pressure Rating psi at Temperature, °F

BORE		TEMPERATURE-°F							
INCH	MATERIAL	70°	200°	400°	600°	800°	1000°	1200°	
0.260	AISI-304	7800	7050	6400	6150	6000	5190	1875	
	AISI-316	7800	7800	7250	7100	6950	5800	2720	
0.385	AISI-304	7000	6200	5600	5400	5200	4500	1650	
	AISI-316	7000	7000	6400	6200	6100	5100	2500	

ARi is a registered Trademark.

ARi Industries Inc

BULLETIN 6.1 August 1997
CORROSIVE SERVICE GUIDE TO MATERIALS

CORRODENT	TEMP. °F.	CONC. %	RECOM. Material	CORRODENT	TEMP. °F.	CONC. %	RECOM. Material	CORRODENT	TEMP. °F.	CONC. %	RECOM. Material
Acetic Acid	212	ALL	Monel	Copper Plating Solution	180		304 SS	Oleic Acid	SEE	FATTY A	CIDS
Acetic Anhydride	300		Nickel	(Cyanide)	76		001.00	Oxalic Acid	212	ALL	Monel
Acetone	212	ALL	304 SS	(Acid)	75		304 55	Photographic Bleaching	100	ALL	304 SS
Acetylene	400		304 SS	Corn Oil	200		304 SS	Palmitic Acid	SEE	FATTY A	CIDS
Alcohols	212	ALL	304 SS	Creosote	200	ALL	304 SS	Phosphoric Acid	212	ALL	316 SS
Alum. (Potassium or	300	ALL	Hast. C	Crude Oil	300		Monel	Phenol	212	ALL	316 SS
Sodium)	010			Ethyl Acetate	SEE	LACQUEF	THINNER	Potassium Compounds	SEE	SODIUM	COMPOUNDS
Aluminum Chloride	212	ALL	Hast. B	Ethyl Chloride, Dry	500		Steel	Propane	300		Steel
Aluminum Sulfate	212	ALL	316 55	Ethanol	SEE	ALCOHOL	S	Rosin	700	100%	316 SS
Ammonia, Dry	212	ALL	304, 316 55	Ethylene Glycol	212	ALL	304 SS	Sea Water	75		Monel
Ammonium Hydroxide (Ammonia, Aqua)	212	ALL	304, 316 55	(Uninhibited)				Soap & Detergents	212	ALL	304 SS
Ammonium Chloride	300	50%	Monel	Ethylene Oxide	75		Steel	Sodium Bicarbonate	212	20%	316 SS
Ammonium Nitrate	300	ALL	304 SS	Fatty Acids	500	ALL	316 SS	Sodium Bisulphite	212	20%	304 SS
Ammonium Sulfate	212	ALL	316 SS	Ferric Chloride	75	ALL	Hast. C	Sodium Bisulphate	212	20%	304 SS
Amyl Acetate	300	ALL	304 SS	Ferric Sulfate	300	ALL	304 SS	Sodium Carbinate	212	40%	316 SS
Aniline	75		Monel	Formaldehyde	212	40%	316 SS	Sodium Chloride	300	30%	Monel
Asphalt	250		304 SS	Formic Acid	300	ALL	316 SS	Sodium Chromate	212	ALL	316 SS
Atmosphere, (Industrial	10000000		304 SS	Freon	300		Steel	Salt or Brine	SEE	SODIUM	CHLORIDE
and Marine)			1000000	Fluorine, Anhydrous	100		304 SS	Sodium Cyanide	212	ALL	304 SS
Barium Compounds	SEE	CALCIUM	1	Furfural	450		316 SS	Sodium Hydroxide	212	30%	316 SS
Beer	70		304 SS	Gasoline	300		Steel	Sodium Hypochlorite	75	10%	Hast. C
Benzene (Benzol)	212		Steel	Glucose	300		304 SS	Sodium Nitrate	212	40%	304 SS
Benzoic Acid	212	ALL	316 SS	Glue ph 6-8	300	ALL	304 SS	Sodium Nitrite	75	20%	316 SS
Bleaching Powder	70	15%	Monel	Glycerine	212	ALL	Brass	Sodium Phosphate	212	10%	Steel
Borax	212	ALL	Brass	Hydrobromic Acid	212	ALL	Hast. C	Sodium Silicate	212	10%	Steel
Bordeaux Mixture	200		304 SS	Hydrochloric Acid	225	ALL	Hast. B	Sodium Sulfate	212	30%	316 SS
Boric Acid	400	ALL	316 SS	(37-30%)	500		204 66	Sodium Sulfide	212	10%	316 SS
Bromine	125	DRY	Monel	Hydrogen Chloride, Dry	000	ALL	304 55	Sodium Sulfite	212	30%	304 SS
Butane	400	ALL	Steel	HydroCyanic Acid	212	ALL	304 55 Manal	Sodium Thiosulfate	212	ALL	304 SS
Butyl Alcohol	SEE	ALCOHO	_S	Hydronuoric Acid	212	60%e	woner	Steam	art statt -	Marian.	304 SS
Butyric Acid	212		Hast. C	Hydrogen Fluoride, Dry	1/0	400/	Steel	Stearic Acid	SEE	FATTY A	CIDS
Calcium Bisulphite	75	ALL	Hast. C	Hydronuogincic Acia	212	40%	Woner	Sugar Solutions	SEE	GLUCOSE	-
Calcium Chloride	212	ALL	Hast. C	Hydrogen Peroxide	125	10-100%	304 55	Sulfur	500	-	304 SS
Calcium Hydroxide	300	20%	Hast. C	Kerosene	300	ALL	Steel	Sulfur Chloride	75	DBY	316 55
Calcium Hypochlorite	SEE	BLEACHI	NG POWDER	Lacquers & Ininners	300	ALL	304 55	Sulfur Dioxide	500	DRY	316 55
Carbolic Acid	SEE	PHENOL		Lactic Acid	300	ALL	316 55	Sulfur Trioxide	500	DRY	316 55
Carbon Dioxide, Dry	800	ALL	Brass	Line	212	ALL	310 55	Sulfuric Acid	212	10%	316 SS
Carbonated Water	212	ALL	304 SS	Linseed Uil	75		Steel	Sulfuric Acid	212	10-90%	Hast B
Carbonated Beverages	212		304 SS	Magnesium Chloride	212	50%	NICKE	Sulfuric Acid	212	90-100%	316 55
Carbon Disulfide	200		304 SS	Magnesium Hydroxide (or Oxide)	75	ALL	304 SS	Sulfuric Acid Eumina	175	30-100 /	Hast C
Carbon Tetrachloride	125	ALL	Monel	Magnesium Sulfate	212	40%	304 SS	Sulfurous Acid	75	20%	316 55
Chlorine, Dry	100		Monel	Mercuric Chloride	75	10%	Hast. C	Titanium Tetrachloride	75	AL1	316 55
Chlorine, Moist	100	ALL	Monel	Mercury	700	100%	Steel	Tannic Acid	75	40%	Hast B
Chloracetic Acid	212	ALL	Monel	Methylene Chloride	212	ALL	304 SS	Toluene	75	HU 70	Steel
Chloroform, Dry	212		Monel	Methyl Chloride, Dry	75		Steel	Trichloracetic Acid	75	Δ11	Hast R
Chromic Acid	300	ALL	Hast. C	Milk, fresh or sour	180		304 SS	Trichlorethylene	300	DRY	Monel
Cider	300	ALL	304 SS	Molasses	SEE	GLUCOSE		Turnentine	75	UNIT	316 55
Citric Acid	212	ALL	Hast. C	Natural Gas	70		304 SS	Varnish	150		Steel
Copper (10) Chloride	212	ALL	Hast. C	Nitric Acid	75	ALL	304 SS	Zinc Chloride	212	Δ1.1	Hast R
Copper (10) Nitrate	300	ALL	316 SS	Nitric Acid	300	- ALL	316 SS	Zinc Sulfate	212	ALL	316 55
Copper (10) Sulfate	300	ALL	316 SS	Oxygen	75	ALL	Steel	Line ounate	212	ALL	010 00

In recommending the above materials, consideration has been given to providing good service life without undue cost. Where two or more materials are satisfactory, the least expensive is listed. Consult the factory for information on materials or services not given.

OTHER MATERIALS SUCH AS: NICKEL, HASTELLOY "B" OR "C" CAN BE PROVIDED. PLEASE CONSULT FACTORY FOR PRICE AND DELIVERY. FOR 1/4" OD AerOpak® Thermocouple CAP & CHAIN: (At Added Cost)

Brass captive cap is available for keeping gard bore clean when not in use.

GENERAL USE

	ELEM. LGTH.	INSERT. LGTH.	SHANK DIA.	EXTERNAL THREAD		LAG. EXT.	ELEM. LGTH.	INSERT. LGTH.	SHANK DIA.	EXTERNAL THREAD
PART NUMBER	Α	U	Q	Р	PART NUMBER	Т	A	U	Q	Р
36139	4	21/2	7/8		36153	2	6	21/2	7/8	
36140	6	4½	7/8		36154	3	9	41/2	7⁄8	
36141	9	7½	7⁄8		36155	3	12	71/2	7/8	3/4''
36142	12	10½	7⁄8	3/4"	36156	3	15	10½	7⁄8	NPT
36143	15	13½	7/8	NPT	36157	3	18	13½	7⁄8	
36144	18	16½	7/8		36158	3	24	19½	7⁄8	
36145	24	221/2	7⁄8		36159	2	6	21/2	1-1/16	
36146	4	21/2	1-1/16		36160	3	9	41/2	1-1/16	
36147	6	4½	1-1/16		36161	3	12	71/2	1-1/16	1″
36148	9	7½	1-1/16	1"	36162	3	15	101/2	1-1/16	NPT
36149	12	10½	1-1/16	NPT	36163	3	18	131/2	1-1/16	
36150	15	13½	1-1/16		36164	3	24	191⁄2	1-1/16	
36151	18	16½	1-1/16		1					
36152	24	221/2	1-1/16							

FOR 3/8" OD

AerOpak® Thermocouple

GENERAL USE

LAGGING EXTENTION TYPE

	ELEM. LGTH.	INSERT. LGTH.	SHANK DIA.	EXTERNAL THREAD		LAG. EXT.	ELEM. LGTH.	INSERT. LGTH.	SHANK DIA.	EXTERNAL THREAD
PART NUMBER A		U	Q	Р	PART NUMBER	Т	Α	U	Q	Р
36191	4	2½	1-1/16		36198	2	6	21/2	1-1/16	
36192	6	41/2	1-1/16		36199	3	9	41/2	1-1/16	
36193	9	7½	1-1/16		36200	З	12	7½	1-1/16	1."
36194	12	101/2	1-1/16	1" NPT	36201	З	15	10½	1-1/16	NPT
36195	15	131/2	1-1/16		36202	3	18	13½	1-1/16	
36196	18	16½	1-1/16		36203	3	24	19½	1-1/16	
36107	24	221/2	1-1/16							

FLANGED For ¹/₄" and ³/₈" OD AerOpak[®] Thermocouple

FLANGE SIZES:

STANDARD-1" and $1\frac{1}{2}$ " Flanges with raised face and 150 psi pressure rating. Other sizes are available upon request.

FOR 1/4" OD

AerOpak[®] Thermocouple

	ELEM. LGTH.	INSERT. LGTH.	SHANK DIA.	BORE DIA.
PART NUMBER	Α	U	Q	В
36204	4	2	3/4	
36205	6	4	3/4	
36206	9	7	3/4	
36207	12	10	3/4	.260
36208	15	13	3⁄4	
36209	18	16	3/4	
36210	24	22	3/4	

CAP & CHAIN:

(At Added Cost) Brass captive cap is available for keeping gard bore clean when not in use.

WELDING:

Primary gard is "J" groove type, secondary weld is 45 bevel groove. Welding is performed by NAVY certified welders using gas shielded arc.

FOR 3/8" OD

AerOpak® Thermocouple

	ELEM. LGTH.	INSERT. LGTH.	SHANK DIA.	BORE DIA.
PART NUMBER	Α	U	Q	В
36211	4	2	7/8	
36212	6	4	7/8	
36213	9	7	7/8	
36214	12	10	7/8	.385
36215	15	13	7/8	
36216	18	16	7/8	
36217	24	22	7/8	

Maximum Flange Pressure Temperature Rating Lbs. Per Sq. Inch

MATERIAL	TEMPERATURE -° F						
	0 °	200°	400°	600°	800°	1000°	1125°
AISI-304		U	P	то		25	500 psi
AISI-316		U	Р	то		25	500 psi

HOW TO ORDER:

1. Specify Part Number and Quantity.

example: 36139-A

1. PART NUMBER (as listed in Tables)

2. MATERIAL (use ARi Symbol)

ARI SYMBOL	MATERIAL
Α	304 STAINLESS STEEL
C	316 STAINLESS STEEL

THERMOCOUPLE ^{2 Wire (4-20 MA)} Temperature Transmitter Systems

2 Year Transmitter Warranty

Temperature Transmitter Features:

- Fits into a waterproof screw cap Connection Head. Eliminates the requirements for separate junction box and mounting.
- Available for Thermocouple type calibration J, K, E, and T.
- RFI and EMI protected.
- Available with spring load thermocouple assemblies.

BULLETIN 6.3

Thermocouple Temperature Transmitter Assemblies (2-Wire 4-20MA)

Thermocouple Temperature Transmitter

INSTALLATION WIRING

SPECIFICATIONS:

Output	4-20mA
Min. current Max. current	2.5mA 28mA
Supply voltage	9-36 V DC
Supply voltage variation effect	Less than 0.001% for 1 volt change
Self heating effect	Less than 0.2% at max. power
Calibration inaccuracy	Less than 0.1% of input span
Linearity	Better than 0.03% of span
Trim stability	Better than 0.05%
Input adjustability	Zero — \pm 45% of span Span — \pm 35% of span
Temperature stability (drift)	Zero — better than 0.01% 1°C Span — better than 0.01% 1°C
Operating temp	-20 +70°C
Ambient storage temperature	-40 ±100°C
Minimum operating range span	50°C
Dimensions	1.7 inch (43mm) diameter x 1.17 inch (40mm) high
Mounting	Inside ARi Aluminum or Cast Iron Connection Head

HOW TO ORDER Temperature Transmitter:

Specify Part No. of Temperature Transmitter and indicate temperature span.

Example: Calibration K to produce 4-20MA over temperature span of 0 to 1000°F

Part No. is: 47075-K-0 to 1000°F

HANGE ONAIT						
ТҮРЕ	Calib. Symbol	Range ° F				
Iron/Constantan	J	32-1400°F				
Chromel/Alumel ¹	к	32-2000°F				
Copper/Constantan	т	32-700°F				
Chromel/Constantan	E	32-1600°F				

RANGE CHART

¹Trade Mark of Hoskins Mfg. Co.

Connection Head

Basic Thermocouple Insert

PROGRAMMABLE DIGITAL INDICATOR

with Transmitter Loop Power Supply

PROGRAMMABLE DIGITAL INDICATOR

Model 610 is a dual purpose Digital Indicator and DC Power Supply that completes the Transmitter System both Zero and Span can be adjusted to match Transmitter temperature ranges with indicating ranges of -199.9 to +199.9 (° C or °F), or -400 to +1999 (°C or °F). Isolated 1 mv/degree analog voltage output or 2 point alarm options are available. Operates from 115V AC Line. Model 610 has resolution of 1°C or 1°F.

PANEL CUTOUT DIMENSIONS: 1.77" high x 3.625" wide x 5" deep

1. Specify Part Number as follows: FOR STYLE T-14P, TX-14, TX-57, TX-457 (EXAMPLE): TX - 57 - 24 E K 9 C Sheath Matl. See table (2). Design No. _ Ungrounded hot junction "A" Length (in inches) -Calibration. See table (3). Probe O.D. size. See table (1). ____ FOR STYLE TX-50824, TX-50867, TX-50829 (EXAMPLE): TX - 50829 - 6 F K 9 C (CI) 6 "B" Length (in inches) Design No. _____ "A" Length (in inches) _____ Thermocouple Head Material "CA" — CAST ALUMINUM "CI" — CAST IRON Probe O.D. size. See table (1). ____ Calibration. See table (3). _____ Sheath Matl, See table (2). Ungrounded hot junction -

- 2. Specify temperature span for 4-20MA output at 24 VDC.
- 3. Specify quantity and any special tests required.
- 4. Shipped either Motor Freight or UPS depending upon weight and package size. F.O.B. Addison, Illinois.

TABLE 1 Sheath & Wire Diameter

ARi Symbol		D	E	F	I
Sheath	inch	.125	.188	.250	.375
Diameter	m.m.	3.17	4.75	6.35	9.52
Wire	inch	.025	.036	.045	.072
Diameter	m.m.	.64	.91	1.14	1.83

TABLE 2 Sheath Material

ARi Symbol	Sheath Materia				
В	Inconel 600*				
A	AISI 304 ST/ST				
С	AISI 316 ST/ST				

*Trademark of International Nickel Corp.

TABLE 3 Thermocouple Wire Calibration

CALIBRATION*	ASTM E-230 SYMBOL	APPROXIMATE SIMULAR CALIBRATIONS
Chromel P-Alumel (1)	ĸ	BS 1827, DIN 43710, NFE 18-001, JIS-C1602
Iron-Constantan	J	BS 1829, NFE 18-001
Chromel P-Constantan (1)	E	
Copper Constantan	TOTAL	BS 1828, DIN 43710, NFE 18-001, JIS-C1602

(1) Registered Trademark of Hoskins Mfg. Co. *All calibrations are to standard limits of error.

<image/> <text><text></text></text>		<section-header><text><text><text></text></text></text></section-header>
-------------------------------------	--	--

- ARi[®] can now offer multiple element assemblies small enough to replace single point thermocouples. Also, large multiple element assemblies to replace expensive thermowells. It is now possible to insert a multicouple assembly directly into a pressurized process chamber with minimum flow restriction and a response time that is measured in seconds. This fast response time will allow detection of abnormal process temperature conditions before damage can occur.
- Multiple level temperature sensor. Measuring junctions spaced to provide continuous temperature profiles under extreme process applications.
- · Sensing end on fast response sensor may be formed or snaked around offsets.
- Withstands external pressures: 1/8" 3000 psig, 1/2" 4000 psig
- · Sheath may be welded or brazed in place, or installed with a single compression fitting.
- Available with: Type "J" for 300 to 1,000°F (-184 to 540°C)
 - Type "K" for 32 to 1,800°F (0 to 980° C)
 - Type "E" for -400 to 1,800°F (-240 to 980°C)
- Individual thermocouple circuits may either be fully insulated from each other or with junctions grounded to inner sheaths for faster response.
- Can be installed into existing thermowells or into fast response protection tubes.
- Ultra-fast time responses for critical process protection. Time constant of 3 seconds at 3 m/s water velocity can be attained with miniature .125 in. (3.18 mm) diameter assembly.
- Multiple element thermocouple assemblies are used to obtain continuous temperature data at preselected points. Previous approaches required installation of a number of thermocouples into rather large thermowells.
- Can be moved through an offset in instrument guide tubes to obtain temperature profile of vessel.

ARi is a Registered U.S. Trademark

ARi Industries Inc

BULLETIN 7.3 August 2002

TYPICAL CONSTRUCTION

Fast Response Multilevel Probe

4.5" Aluminum FS Box ~ **STYLE NO. T-50780** c, • 2 ω σ see below 0 0 0 0 0 0 • 0 0 ۲ . • x 🖤 x * * * * A-100 4" BEE -½" Galv. Nipple 400°F (204°C) max.

Note: Other Termination Designs are available per your requirement.

TYPICAL SECTION A-A Outer Sheath AerOpak® Mineral Insulated Thermocouple Wires

JUNCTIONS

SPECIFICATIONS:

STYLE	T-50	656	T-50657 &	T-50780	T-50	0809
OUTER DIAMETER*	0.125" ± .002" (3.18 mm)	0.500" ±.005" (12.7 mm)	0.125" ±.002" (3.18 mm)	0.500" ±.005" (12.7 mm)	0.125" ±.002" (3.18 mm)	0.500" ±005" (12.7 mm)
TRANSITION SECTION	1/2" NPT NIPPLE x 4" Long (102 mm)	1/2" NPT NIPPLE x 4" Long (102 mm)	1/2" NPT NIPPLE x 4" Long (102 mm)	1/2" NPT NIPPLE x 4" Long (102 mm)	1/2" NPT NIPPLE x 4" Long (102 mm)	1/2" NPT NIPPLE x 4" Long (102 mm)
LENGTH RANGE (L)	6" to 240" ±1" Tolerance (152-6096 mm)	12" to 240" ±1" Tolerance (305-6096 mm)	6" to 240" ±1" Tolerance (152-6096 mm)	12" to 240" ±1" Tolerance (305-6096 mm)	6" to 240" ±1" Tolerance (152-6096 mm)	12" to 240" ±1" Tolerance (305-6096 mm)
MAX. PRESSURE AT 100°F	3000 psig	4000 psig	3000 psig	4000 psig	3000 psig	4000 psig
TIME CONSTANT <i>τ</i> at 3 MPS Water velocity (grounded junction)	3 Seconds	10 Seconds	3 Seconds	10 Seconds	3 Seconds	10 Seconds
WEIGHT per UNIT LENGTH	.03 Lb./Ft. .045 Kg/M	0.45 Lb./Ft. .675 Kg/M	.03 Lb./Ft. .045 Kg/M	0.45 Lb./Ft. .675 Kg/M	.03 Lb./Ft. .045 Kg/M	0.45 Lb./Ft. .675 Kg/M
MINIMUM BENDING Radius for (L) Section to avoid a Permanent Set	0.5" (12.7 mm)	12" (304.8 mm)	0.5" (12.7 mm)	12" (304.8 mm)	0.5" (12.7 mm)	12'' (304.8 mm)
NUMBER OF POINTS AVAILABLE Note: Junction equally spaced or provided with locations per customer requirements.	2 to18	2 to18	2 to 4	2 to 6	2 to 3	2 to 3

*Available in intermediate sizes on special order. Consult Factory.

MAXIMUM OPERATING TEMPERATURES

MAXIMUM		°F	1000	1600	1800
TEMPERATU	JRE	°C	540	871	980
THERMOCO	UPLE		J	К	К
CALIBRATIC	DN				
Per ASTM E-	230-81			E	E
(standard lim	its of error)	A		
OUTER SHEATH MATERIAL	ARi "A" ("B" ("C" ("F" (Symbol (304 ST/ST) (Inconel 600)** (316 ST/ST) (347 ST/ST)	304 ST/ST INCONEL 600** 316 ST/ST 347 ST/ST	304 ST/ST 316 ST/ST 347 ST/ST	INCONEL 600**

The effect of corrosion on outer sheath should be considered as a modifying factor for this table. *Reg. T.M. of Hoskins Mfg. Co. **Reg. T.M. International Nickel Co.

EXPLANATION OF PART NUMBER:

(example) <u>T- 50656.4-120</u> <u>D</u> <u>K</u>	$\frac{8}{4} = \frac{12, 14, 20}{4} - \frac{16}{4}$
Design Number J J Number of Thermocouples J J Probe Length Probe O.D. Size (D 1/8" O.D., K 1/2" O.D.) Calibration	Lead Wire Length (in inches) Junction Spacing* (in inches from tip) Sheath Material (ARi Symbol)

*Note when Junctions are to be equally spaced, indicate First Number (in inches) from Tip.

HOW TO ORDER

- 1. Generate Part Number as described under "Explanation of Part Number."
- 2. Specify quantity and any special tests if required.
- 3. Shipped by Motor Freight or UPS, insured, depending upon size and weight.
- 4. Shipping form. Shipped straight for lengths of 120 inch (3050mm). Longer lengths will be shipped coil (unless requested otherwise) as follows:

- Superior Corrosion Resistance with low carbon 316 ST/ST sheaths
- Can be sharply bent with no change in performance.

LABORATORY ACCURACY WITH INDUSTRIAL RUGGEDNESS

Platinum resistance thermometers are used for interpolation between the IPTS-68 fixed temperature points of ice and antimony (0°C to 630.74°C), generally used where accuracy and stability are most important.

The ARiDET* approach to RTD's will bring + 05° laboratory accuracy to the toughest industrial process — without special handling considerations. **ARI INDUSTRIES, INC.** has combined the inherent accuracy of a precisely wound Platinum Resistance element with AerOpak* compacted ceramic insulated cable. The result is a low cost yet rugged sensor that will take factory handling — retaining the stability needed for today's process control.

Available with either the 99.999% high purity JIS C-1604-81 or 99.99% DIN 43760 temperature vs resistance curve.

See temperature vs resistance tables for how to obtain laboratory accuracy.

ARI is a Registered US Trademark Protected by US Patents 3,032,444, 3,048,641; 3,625,775; 3,144,507, 2,994,733 and 4,087,775. In Canada Patent No. 1040456. In UK Patent No. 1564175

ARi Industries Inc

BULLETIN 8.0 MAY 1996 The response of an ARi Resistance Temperature Detector is defined by two notable characteristics when exposed to an instantaneous (step) change in environment temperature. These are:

- a. Time Constant (τ). The time to reach 63.2 pct of the complete step change in temperature.
- b. Response Time. Time to reach within 0.5 pct of final temperature in a step change. This is approximately equal to 5 times the Time Constant.

The response of a temperature sensor to a step change in environment temperature tends to follow a second order differential equation. However, this is approximate, since if the mass of the sensor is small in relation to the mass of the fluid passing over it (such as in the case of a liquid), the response may approach a first order differential equation. A typical response is as follows:

Time Constant has application for more common experiences in process control, ie, ramp change or sinusoidal changes in environmental temperature. The response of a sensor under these conditions are:

Time constant is related to the environmental conditions by the following approximate relation (Ref NASA TN 2599)

 $\tau = f \frac{(D)^{1.5}}{(\rho V)^{0.5}}$ Where D = Diameter of sensor $\rho = \text{Density of fluid or gas}$ V = Velocity of fluid

Knowing the time constant (τ) for a given sensor at one given set of conditions, it can be computed for another set of conditions.

Time constant data for ARi ARiDET® Resistance Temperature Detectors are as follows:

Condition 1 In water at a flow rate of 3 ft per second and $T_2-T_1 = 190^{\circ}$ F, perpendicular to axis of sensor.

SENSOR DIAM, inches	0.125	.188	.250
TIME CONSTANT, sec.	0.8	1.6	2.2

Condition 2 In air at a flow rate of 65 ft/sec and density of 0.769 lb/ft³. Mass velocity of 5 lbm/ft² sec and T_2 - $T_1 = 61^{\circ}$ F. Flow perpendicular to axis of sensor.

SENSOR DIAM, inches	0.125	.188	.250
TIME CONSTANT, sec	7.5	14.5	20.5

SELECTION/MATCHING

Completed probes may be matched in pairs to the nearest 0.01 ohm at 0°C for differential temperature measurements to 0.05°C.

Completed probes may be supplied with selected ice point resistances within a narrow band to eliminate the need for compensation in indicating circuits.

ARi ARiDET[®] consists of a specially installed platinum resistance element completely encased in compacted metallic oxide insulation of high thermoconductivity to insure minimum temperature differential between the sensor surface and the element. Standard sensors have 3 constantan equi-resistance lead wires in lead portion with compacted MgO insulation. Sheath material is 316 L st/st in fully annealed condition. Performance specifications are shown for the element portion and the lead portion.

	LEAD	ELEMENT	
Accuracy		±0.01 ohm at 0°C	
Stability Maximum ice point shift after long term thermal cycling		-130 to +93° C ±.05% -130 to 315° C ±.10% 315 to 600° C ±.5%	
Temperature Range	-250 to +1000° C	-200 to +600° C	
Measuring Current		10 milliamps DC max	
Vibration Shock	Vibration: ±50G, 60 to 2000 Hz Shock: 1000G Along all three mutually perpendicular axes when correctly mounted.		
Temp/Res. Curve (0 to 100°C)	0.00385Ω/Ω/°C per DIN 43760 0.003916Ω/Ω/°C per JIS C 1604-8		
Individual Calib.		To nearest ±0.01 ohm @ 0°C	
Self Heating Error	Less than 0.02° C/MW		
Max. External Pressure	50,000 psi (3510 Kg/cm²)		
Stock Length L	24 inch (610 mm)		

SENSOR PARAMETERS			
Diameter, inch (mm)	0.125 (3.18)	0.188 (4.78)	0.250 (6.35)
Temp. sensitive length, inch (mm)	1.1 (28.0)	1.1 (28.0)	1.1 (28.0)
Bending Restriction, Distance from tip to be left straight, inch (mm)	2.1 (53.3)	2.1 (53.3)	2.1 (53.3)
Minimum Bending Radius, inch (mm)	0.5 (12.7)	0.75 (19.0)	1.0 (25.4)
Maximum length feet (meter)	700 (213)	300 (91)	175 (53)
Minimum length inch (mm)	4 (102)	4 (102)	4 (102)
Constantan 3 wire leads, resistance in ohms per inch-each wire	0.061	0.025	0.015

TYPICAL 3 WIRE MEASURING CIRCUIT FOR RTD'S

A 3-wire system may be used to eliminate the effect of lead wire resistance changes by introducing R_L (lead wire resistance) into each leg of a bridge. The third lead wire is added to the detector circuit without affecting bridge balance. The resultant circuit is sensitive only to resistance element temperature changes.

MINERAL INSULATED ARIDET® RTD SENSORS

Style PRT-14.3

Basic unit, constantan wires bared for direct attachment to terminals.

Style PRT-22.3

Teflon insulated and shielded lead wires attached to basic probe, epoxy potting compound, U.S. Patent 3,144,507 strain relief.

Style PRT-90.3

with quick disconnect Sealed, vibration resistant connector with extra pin for shielding, mate supplied overall connector length 3.25" when mated.

Style PRT-96.3

with standard size connection head

Industrial weatherproof aluminum head with internal screw terminals 3/4" NPT exit thread for hard wiring.

Style PRTX-96.3

with temperature transmitter.

Style PRT-50733.3

with miniature size connection head

Miniature weatherproof Aluminum Connection head with internal screw terminals. 1/2" NPT exit thread for hard wiring.

INSTALLATION ACCESSORIES

Pressure or Vacuum Tight Applications

COMPRESSION FITTINGS

300 series stainless steel with 1/8" NPT thread for setting immersion and pressure tight entry into vessels, process lines, etc. Useable to 4000 psi differential pressure.

Diam. D, inch	0.125	.188	.250
Part Number	PTM-D2SS	PTM-E2SS	PTM-F2SS

SURFACE OR PIPE MEASUREMENTS

300 series st/st clamp that can be we	lded, brazed, spot welded or glued
to the surface of the item being	measured. The wide tabs insure
adequate heat flow between the ser	nsor and measured object to keep
conduction errors at a minimum.	

Diam. D, inch	0.125	.188	.250
Part Number	490999-D	490999-E	490999-F

3-CONDUCTOR LEAD WIRE

PART NO. 012529

3 Conductor stranded Nickel 20 ga. Teflon over each with tinned copper braid overall and teflon wrap overall. Color coded, 2 black, 1 red.

TEMPERATURE TRANSMITTERS

Spring Loaded

PART NO. 47041 fits T-96.3, T-296.3, T-396.3

Specify calibration and span

HOW TO ORDER

ARiDET[®] RTD's are available in three diameters.

Elements made with 100Ω at 0°C and two calibrations.

Diam. D, inch	0.125	.188	.250
ARi Symbol	D	E	F

Calibration Ω/ Ω/ °C	0.00385	0.003916
ARi Symbol	100 DIN	100

1. Establish Part Number:

STYLE – I	D CALIB.
Select Style from Pages 4 or 5	Use ARi Symbol from above for calib.
Length in inches stocked lengths are 24" (min. length is 4")	Use ARi Symbol from above for Diameter

- 2. Specify quantity and any special tests.
- 3. Specify installation accessories and quantity.
- 4. If temperature transmitter is required to produce 4-20ma with 24VDC excitation, use Style PRTX. Specify span. See ARi Bulletins on temperature transmitters for standard spans.
- 5. Shipped by UPS, insured or motor freight, insured.

TEMPERATURE VS RESISTANCE DATA IN °F

TEMPERATURE COEFFICIENT OF .003916Ω/Ω/°C. REF. JIS-C-1604-81

100 OHM	IS AT	32° F									FUNC	AME	NTAL	INTE	RVAL	39.16	онм	S
F	-300	-200	-100	0	F	0	100	200	300	400	500	600	700	800	900	1000	1 100	°F
-0	24.08	47.53	70.52	92.93	0	92.93	114.93	136.59	157.88	178.81	199.37	219.58	239.44	258.92	278.05	296.76	315.14	0
-10	21.71	45.20	68.26	90.70	10	95.13	117.11	138.73	159.99	180.88	201.41	221.59	241.40	260.85	279.95	298.61	316.97	10
-20	19.23	42.96	66.00	88.47	20	97.35	119.29	140.87	162.09	182.95	203.44	223.58	243.36	262.78	281.85	300.56	318.80	20
-30	16.83	40.62	63.70	86.24	30	99.56	121.47	143.01	164.20	185.02	205.47	225.57	245.32	264.70	283.66	302.31	320.63	30
-40		38.27	61.40	84.00	40	101.77	123.64	145.16	166.29	187.08	207.50	227.56	247.27	266.62	285.56	304.16		40
-50		35.91	59.10	81.77	50	103.97	125.80	147.28	168.39	189.14	209.52	229.54	249.22	268.53	287.51	305.99		50
-60		33.54	56.79	79.52	60	106.17	127.97	149.40	170.48	191.20	211.54	231.52	251.17	270.44	289.36	307.82		60
-70		31.18	54.48	77.28	70	108.36	130.13	151.53	172.57	193.25	213.55	233.50	253.13	272.35	291.21	309.65		70
-80		28.82	52.17	75.04	80	110.56	132.28	153.65	174.65	195.30	215.57	235.48	255.06	274.25	293.06	311.48		80
90		26.45	49.85	72.80	90	112.75	134.44	155.77	176.73	197.33	217.57	237.46	256.99	276.15	294.91	313.31		90
-100		24.08	47.53	70.52	100	114.93	136.59	157.88	178.81	199.37	219.58	239.44	258.92	278.05	296.76	315.14		100
Ω/°FAve.	242	.234	.230	.224		.220	.217	.213	.209	.205	.202	.199	.195	.191	.187	.184	.183	

TEMPERATURE COEFFICIENT .00385 Ω/Ω/° **C. REF. DIN 43760**

100 OH	NS AT	32° F									FUND	AME	NTAL	INTE	RVAL	38.50	онм	S
۰F	-300	-200	-100	0	°F	0	100	200	300	400	500	600	700	800	900	1000	1 100	۰F
-0	25.1	48.38	70.95	93.01	0	93.01	114.68	135.97	156.90	177.48	197.69	217.55	237.06	256.20	274.99	293.43	311.50	0
—10	22.71	46.09	68.72	90.81	10	95.20	116.82	138.08	158.97	179.51	199.70	219.52	238.99	258.10	276.85	295.25	313.29	10
-20	20.33	43.80	66.49	88.61	20	97.38	118.97	140.18	161.04	181.55	201.69	221.48	240.92	259.99	278.71	297.07	315.07	20
-30	17.97	41.49	64.25	86.41	30	99.57	121.10	142.29	163.11	183.58	203.69	223.44	242.84	261.88	280.56	298.89	316.86	30
40		39.18	62.00	84.21	40	101.74	123.24	144.38	165.17	185.61	205.68	225.40	244.76	263.76	282.41	300.70		40
-50		36.87	59.75	82.01	50	103.90	125.37	146,48	167.23	187.63	207.67	227.35	246.68	265.64	284.26	302.51		50
-60		34.54	57.49	79.81	60	106.06	127.50	148.57	169.29	189.65	209.65	229.30	248.59	267.52	286.10	304.32		60
-70		32.21	55.22	77.61	70	108.22	129.62	150.66	171.34	191.67	211.63	231.24	250.50	269.40	287.93	306.12		70
-80		29.87	52.95	75.39	80	110.38	131.74	152.74	173.39	193.68	213.61	233.19	252.40	271.27	289.77	307.92		80
90		27.48	50.67	73.18	90	112.53	133.86	154.82	175.43	195.69	215.58	235.12	254.31	273.13	291.60	309.71		90
-100		25.1	48.38	70.95	100	114.68	135.97	156.90	177.48	197.69	217.55	237.06	256.20	274.99	293.43	311.50		100
Ω/°FAve.	.237	233	.226	.221		.217	.213	.209	.206	.202	.199	.195	.191	. 188	.184	.181	.179	

TEMPERATURE VS RESISTANCE DATA IN °C

TEMPERATURE COEFFICIENT OF .003916Ω/Ω/° C REF. JIS C-1604-81

100 OHM	IS AT	0° C		FUNDAMENTAL INTERVAL 39.16 OH								
°C	-100	0	C	0	100	200	300	400	500	600	°C	
-0	59.79	100.00	0	100.00	139.16	177.14	213.95	249.59	284.04	317.33	0	
—10	55.47	96.02	10	103.97	143.01	180.88	217.57	253.09	287.43	320.59	10	
-20	51.32	92.03	20	107.93	146.85	184.60	221.17	256.57	290.79	323.84	20	
	47.16	88.02	30	111.87	150.68	188.31	224.77	260.05	294.15	327.08	30	
—40	42.97	84.00	40	115.81	154.49	192.01	228.35	263.51	297.50		40	
-50	38.76	79.97	50	119.73	158.30	195.70	231.92	266.96	300.83		50	
-60	34.53	75.93	60	123.64	162.09	199.37	235.47	270.40	304.15		60	
—70	30.27	71.87	70	127.54	165.87	203.03	239.02	273.83	307.47		70	
—80	25.98	67.79	80	131.42	169.64	206.69	242.55	277.25	310.76		80	
—90	21.66	63.70	90	135.30	173.40	210.33	246.08	280.65	314.05		90	
-100	17.31	59.59	100	139.16	177.14	213.95	249.59	284.04	317.33		100	
Ω/°C Ave.	.423	.404		.390	.380	.368	.356	.345	.333	.325		

TEMPERATURE COEFFICIENT OF .00385Ω/Ω/°C REF. DIN 43760

100 OH	IS AT (0°C		1	FUN	DAME	NTAL	INTER	VAL 3	8.5 OH	MS	
°C	-100	0	C	0	100	200	300	400	500	600	°C	
-1	60.20	100.00	0	100.00	138.50	175.84	212.03	247.06	280.93	313.65	0	
—10	56.13	96.07	10	103.90	142.28	179.51	215.58	250.50	284.26	316.86	10	1000
20	52.04	92.13	20	107.79	146.06	183.17	219.13	253.93	287.57	320.05	20	
-30	47.93	88.17	30	111.67	149.82	186.82	222.66	257.34	290.87	323.24	30	
—40	43.80	84.21	40	115.54	153.57	190.46	226.18	260.75	294.16		40	
—50	39.65	80.25	50	119.40	157.32	194.08	229.69	164.14	297.43		50	
-60	35.48	76.28	60	123.24	161.04	197.70	233.19	267.52	300.70		60	
—70	31.28	72.29	70	127.07	164.76	201.30	236.67	270.89	303.95		70	100
80	27.03	68.28	80	130.89	168.47	204.88	240.15	274.25	307.20		80	
—90	22.71	64.25	90	134.70	172.16	208.46	243.61	277.60	310.43		90	
-100	18.44	60.20	100	138.50	175.84	212.03	247.06	280.93	313.65		100	
∩/°C Ave.	.418	.398		.385	.373	.362	.350	.339	.327	.320		

ABORATORY

Each ARIDET® RTD can be supplied with an exact (\pm .01 ohm) resistance value obtained at 32°F (0°C). This individual calibration data can be used to obtain accuracies of \pm 0.05°F at 32°F and \pm 0.01% of resistance thruout the range.

The temperature vs resistance tables are based on a 32° F ice point resistance of 100.00 ohms (R_0). From 32° F to sensor upper limit, the RTD equation is $R_1=R_0$ (1+At+Bt²) where R_0 , A and B are constants. These temperature vs resistance tables are based on the A and B constants for the platinum wire used in place of 100.00 ohms, the tabular data can be factored to yield ±0.01% accuracy for that particular RTD sensor.

Example:

If the calibrated R₀ value is 99.89 ohms, multiply tabular values by 0.9989 to derive a corrected R vs T table. At 100° C the new value for a DIN 43760 RTD would be 138.35 ohms instead of 138.50 ohms.

MADE TO ORDER PRT ASSEMBLIES

CALIBRATION:

All assemblies shown can be supplied with a different calibration and 0°C resistance value.

LENGTHS:

Standard lengths for the 3 diameters is 24 inch (610mm). Longer lengths of compacted MgO insulated lead portion can be supplied up to the following:

Diameter D, inch (mm)	0.125 (3.18)	0.188 (4.78)	0.250 (6.35)
Max. length feet (meters)	700 (213)	300 (91)	175 (53)

Duplex elements at 0.250 inch diameter will be approximately same length.

DUPLEX ELEMENTS:

Can be supplied at 0.250 inch diameter only where suitable terminations can be made. Temperature Transmitters for Duplex circuits are not available for internal mounting in Connection Heads. The following styles can be made with Duplex Elements. Specify the 6-wire style for Duplex elements.

3-WIRE STYLE	PRT-14.3	PRT-22.3	PRT-96.3	PRT-296.3	PRT-396.3
6-WIRE STYLE	PRT-14.6	PRT-22.6	PRT-96.6	PRT-296.6	PRT-396.6

-4 WIRE:

PRT type assemblies can be made with four leadwires with the following circuit.

Send us your drawings/sketches for prompt quotations.

